PHYS323

Electromagnetic Field Theory Il

The Biot-Savart Law

The Biot-Savart Law is an equation that describes the magnetic field created by a
current-carrying wire, and allows you to calculate its strength at various points. It

looks like this
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where K = |R| and a; = R/R. Thus the direction of dH can be determined by the right-
hand rule with the right-hand thumb pointing in the direction of the current, the right-hand
fingers encircling the wire in the direction of dH '

in terms of the distributed current sources, the Biot—Savart law

becomes
K
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H= 4-;,123 B (volume current) Current distributions: {a) line current, (b) surface
v current, (¢) volume current.
H (or [} is out Hiorfyis in Conventional representation of H {or ) (a) out of
é the page and (b) into the page.
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determine the field due to a straight current carrying filamentary conductor of finite
length AB as in Figure

_IaixR

dH = ——
darR-

Butdl = dza,and R = pa, — za., s0

dl X R = pdzay,

Hence,
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H {into the page)

Letting z = poot . dz = —p cosec” a de,

H— 1 ""’J"',:'.u2 cosec” o do
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4 £ COSECT o
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dmp "

or

— — — ! for any straight

l ! filamentary conductor of
M =~ (cos a — cos ey, | tla
; 47p (cos ey = cosaiiy | finite length

when the conductor is semiinfinite point A is now at point A is now at (90, 0, 0) while B is at (0, 0, «);
o, = 90°, az2=0°,

I
H=— a
dwp

when the conductor is infinite in length: A is at (0, 0, - o0) while B is at (0, 0, , ©0); as= 180°, 02= 0°,

where aiis a unit vector along the line current and apis a unit vector along the perpendicular line from
the line current to the field point.
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For a circular loop

Fdl = R
dH = ———
4R
where ol = pdga, R = (0,0 k) — (x, .00 = —pa, + ha_, and
a, A a,
dl < R = [ pdg 0| =phdoa, + o' doa,
—a 1 h
Hence,
dH = — phdda, + p*dda)=dH a + dH a fa e
dmlp® + B p TP dg A, o B 4,

{a) circular current foop, (b) flux lines due

By symmetry, the contributions along ap add up to zero because the radial components produced by
pairs of current element 180° apart cancel.

Integrating cos ¢ or sin ¢ over (} = & = 27 gives zero, thereby showing that H, = 0,

Thius
T et dda, fp*2wa,
H= | JdH.a. [ o — = s
J BT e e R
or
}g}:u:
T ar I g pae
2o + &)

For solenoid of length | and radius a consists of N turns of wire carrying current

i j
H=" (cosf; —cosfa

—

IfI>>aq,

H = nia.
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AMPERE'S CIRCUIT LAW
Ampere's circuit law states that the line integral of the tangential component of H around a dosed path
is the same as the net current lenc. enclosed by the path.

U: H-dl =1,

By applying Stoke's theorem

J,_,J_.=\FI[-.;1TI= [[T-'PZ]-[}H:.IE

I A

.Fm=]rj-d'5 |'€'h-:H=.]

APPLICATIONS OF AMPERE'S LAW

A. Infinite Line Current

= J Hl.'lal:ﬁ 'j:'q-'lqlﬂ,i, = H.:. J .Eﬂl':ﬁ - H-a.:- " :TF" Amperian path
lII|
i]
g
P
H>_——a
2an #
4

By Ass. Prof. Dr. Hind S. Hussain

oyl



PHYS323

B. Infinite Sheet of Current

TR T T wrvVe

Consider an infinite current sheet in z = 0 plane.
If the sheet has a uniform current density then

K=K L a,
Applying Ampere’s Law on closed 7'"'"""
rectangular path (Amperian path) we —
get .

1 L N 49
fl‘l'dl=l,.r=x.b (i) /.i_‘_:../ :"/{/
—p

To solve integral we need to know how H is like

We assume the sheet comprising of filaments ¢H above and below the
sheet due to pair of filamentary current.
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The resultant 4H has only an x-component.

Also H on one side of sheet is the negative of the other.

Due to infinite extent of the sheet, it can be regarded as

consisting of such filamentary pairs so that the characteristic of
H for a pair are the same for the infinite current sheets

_ ) A, =0 g
= {—Hna_‘ z<0 (1)

where H_ is to be determined.

Evaluating the line integral of H along the closed path

fwa= ([« [« +[)n-a

-—
-

0(=a) + (—H,)(—b) + 0(a) + H,(b)

= 2H.b (iii)
Comparing (i) and (iii), we get ]
Ho = _Kv 1
Y (1v)
Using (iv) in (ii), we get
%K,a,, z>0

1
ZK’a" z<0

C. Infinitely Long Coaxial Transmission Line
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Generally, for an infinite sheet of current density K

!
H='2'K>(a,,

where a_ is a unit normal vector directed from the current sheet to the
point of interest.

The magnetic flux density B is similar to the electric flux density D
Therefore, the magnetic flux density B is related to the magnetic field
intensity H

B=puH

where p_ is a constant and is known as the permeability of free space.

Its unit is Henry/meter (H/m) and has the value
fo = 47 X 107" H/m

The magnetic flux through a surface S is given by

‘P=fB-ds

i Pl | 5
where the magnetic flux y is in webers (Wb) and the magnetic flux
density is in weber/ square meter or Teslas.
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closed surface, ¥ =0

Magnetic flux lines are always close
upon themselves,.

So it is not possible to have an isolated
magnetic pole (or magnetic charges)

An isolated magnetic charge does not exist.

Thus the total flux through a closed surface in a magnetic field must
be zero.

(5.8-0

This equation is known as the law of conservation of magnetic flux or
Gauss’s Law for Magnetostatic fields.

Magnetostatic field is not conservative but magnetic flux is conserved.

Magnetic flux lines
Magnetic flux lines due to a straight
wire with current coming out of the
page

Each magnetic flux line is closed
with no beginning and no end and
are also not crossing each other.

In an electrostatic field, the flux passing through a closed surface is

the same as the charge enclosed. a0

Y)=§DdS:Q b
Thus it is possible to have an isolated i
electric charge.
Also the electric flux lines are not b8
necessarily closed.
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Applying Divergence theorem, we get

fB-dS=J’V-de=O
5

v

or VB=O

This is Maxwell’s fourth equation.

This equation suggests that magnetostatic fields have no source or

sinks.
Also magnetic flux lines are always continuous.

According to Faraday a time varying magnetic field produces an
induced voltage (called electromotive force or emf) in a closed circuit,
which causes a flow of current.

The induced emf (V_,,) in any closed circuit is equal to the time rate of

change of the magnetic flux linkage by the circuit. This is Faraday’s
Law and can be expressed as

d\ d¥
Vm.= —— _N_
om dt dt

where N is the number of turns in the circuit and v is the flux through
each turn.

The negative sign shows that the induced voltage acts in such a way to
oppose the flux producing in it. This is known as Lenz’s Law.
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For a circuit with a single turn (N = 1)

d¥
Vet = ———
Tt
In terms of E and B this can be written as
d
Vc,,,,-=§E-dl= IB dS (i)
A d:

where y has been replaced by f s B + dS and S is the surface area of
the circuit bounded by a closed path L..

The equation says that in time-varying situation, both electric and
magnetic fields are present and are interrelated.

The variation of flux with time may be caused in three ways.

1. By having a stationary loop in a time-varying B field.
2. By having a time-varying loop area in a static B field.
3. By having a time-varying loop area in a time-varying B field.

Increasing B(7)

Consider a stationary conducting
loop in a time-varying magnetic B
field. The equation (i) becomes /

B
chf:§E'dl=_J dl ) 1
L S

dt
induced B
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This emf induced by the time-varying current in a stationary loop is
often referred to as transformer emf in power analysis since it is due to
the transformer action.

By applying Stokes’s theorem to the middle term, we get
B
I(Vx E):-dS = —I-':“ds
S S
Thus
JB
VAKE=——
ot
This is one of the Maxwell’s equations for time-varying fields.

It shows that the time-varying field is not conservative.

VXE#0

When a conducting loop is moving in a static B field, an emf is
introduced in the loop.

The force on a charge moving with uniform velocity u in a magnetic

field B is
F,=QuXB

The motional electric field E , is defined as

F
E,.=—=uXB

Q
Consider a conducting loop moving with uniform velocity u, the emf
induced in the loop is
Vet = § E, dl = § (uXB)-dl ()
L L

This kind of emf is called the motional emf or flux-cutting emf.
Because it is due to the motional action. eg,. Motors, generators
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By applying Stokes’s theorem to equation (i), we get

J(VxE,,,)-dS ij(uxB)-dS
Y S

VXE,=VX(uXB)

Consider a moving conducting loop in a time-varying magnetic field

Then both transformer emf and motional emf are present.

Thus the total emf will be the sum of transformer emf and motional
emf

v,n,=fs~d1=—Ji'3-ds+§(uxn)-dl
K Sat L

also

VXE=—%+VX(uXB)
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For static EM fields
VXH=] (i)
But the divergence of the curl of a vector field is zero. So
V. (VXH)=0=V-]J i
But the continuity of current requires

ap,
v-I=-"Pr%0 i
ot

Equation (i1) and (ii1) are incompatible for time-varying conditions
So we need to modify equation (i) to agree with (iii)
Add a term to equation (i) so that it becomes
VXH=]J+], (iv)
where J, is to defined and determined.

Again the divergence of the curl of a vector field is zero. So
V- (VXH)=0=V-J+ V-], (v)

In order for equation (v) to agree with (iii)

dp, 0 aD
V. :—Vo — e A e V-D =V'_
Ja =%~V D it
dD
oK Ja = & (vi)
Putting (vi) in (iv), we get
oD
VXH=J+ 'a—‘

This is Maxwell’s equation (based on Ampere Circuital Law) for a
time-varying field. The term J; = 8D/t is known as displacement
current density and J is the conduction current density J = gk .
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Maxwell’s Equations in Final Form

Differential Form Integral Form Remarks
V-D=p, 'f D-dS = J p. dv Gauss's law
3
V:B=0 % B:dS=10 Nonexistence of isolated
5 magnetic charge*
a a
TXE=-—B {E~{fl=—,—|’ﬂ-tﬁ Faraday's law
ar , ar J
'\"'XH:J+B_—D {H-dI=J(J-~a_£)'dS Ampere's circuit Jaw
dl L . dr
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