

Mohammed Q. AliMohammed Q. AliMohammed Q. AliMohammed Q. Ali

Chapter 3 Programming in MATLAB

 For simple problems, entering commands at the MATLAB prompt in the
Command window is simple and efficient. However, when the number of
commands increases, or you want to change the value of one or more variables,
reevaluate a number of commands, typing at the MATLAB becomes tedious. You
will find that for most uses of MATLAB, you will want to prepare a script, which
is a sequence of commands written to a file. Then, by simply typing the script file
name at a MATLAB prompt, each command in the script file is executed as if it
were entered at the prompt.
 Script File: Group of MATLAB commands placed in a text file with a text
editor. MATLAB can open and execute the commands exactly as if they were
entered at the MATLAB prompt. The term “script” indicates that MATLAB reads
from the “script” found in the file. Also called “M-files,” as the filenames must end
with the extension ‘.m’ , e.g. example1.m.
 M-files are text files and may be created and modified with any text editor. The
steps to create a script are:

1) Click on icon on the MATLAB toolbar.
2) Press keys (Ctrl + N)
3) Form (File → New → Script)
 A new window will activate called the Editor as shown.

 When finished, save the file using File → Save or click on icon. The rules

for filenames are the same as for variables (they must start with a letter, after
that there can be letters, digits, or the underscore, etc.). By default, scripts
will be saved in the Work Directory. If you want to save the file in a different
directory, the Current Directory can be changed.

Save and run program

Line number

Mohammed Q. AliMohammed Q. AliMohammed Q. AliMohammed Q. Ali

Chapter 3 Programming in MATLAB
Example 3.1: Write a program (m-file) and named it “Qroots.m” to find the
quadratic equation roots: ��� � �� � � � �
Sol:

a=2;
b=- 5;
c=3;
r1=(-b+sqrt(b^2-4*a*c))/(2*a)
r2=(-b-sqrt(b^2-4*a*c))/(2*a)

 To execute the script M-file, simply type the name of the script file Qroots at
the MATLAB prompt.

 >> Qroots
r1 =
 1.5000
r2 =
 1

Notes :

 When file is executed, All its variables are displayed in workspace window
 It is useful to use functions such as (clc , clear , format ,…) in script file to

improve the results.

Example 3.2: write a program (vector.m) to generate a vector with 12 random
elements and find:

a. The largest element and its position.
b. The smallest element and its position.

Sol:

clear % clear variable from memory
clc % clear the commands windows
format bank % real number with 2 digits
V=rand(1,12) % generate row vector
[Vmax,Pmax]=max(V) % find the maximum element and its position

[Vmin Pmin]=min(V) % find the minimum element and its position

>> vector
V =
 Columns 1 through 6
 0.75 0.26 0.51 0.70 0.89 0.96
 Columns 7 through 12

Mohammed Q. AliMohammed Q. AliMohammed Q. AliMohammed Q. Ali

Chapter 3 Programming in MATLAB
 0.55 0.14 0.15 0.26 0.84 0.25
Vmax =
 0.96
Pmax =
 6.00
Vmin =
 0.14
Pmin =
 8.00

 The script would be much more useful if it were more general; for example, if
the value of the radius could be read from an external source rather than being
assigned in the script. Also, it would be better to have the script print the output in
a nice, informative way. Statements that accomplish these tasks are called
input/output statements, or I/O for short. With examples of input and output
statements will be shown here from the Command Window, these statements will
make the most sense in scripts.

 The simplest input function in MATLAB is called input . The input function is
used in an assignment statement. To call it, a string is passed, which is the prompt
that will appear on the screen, and whatever the user types will be stored in the
variable named on the left of the assignment statement. To make it easier to read
the prompt, put a colon (:) and then a space after the prompt. For example:

 >> r = input ('Enter the radius: ')
Enter the radius: 7
r =
 7
If character or string input is desired, ‘s’ must be added after the prompt:

 >> name = input ('Enter your Name: ', 's')
Enter your Name: Ahmed
name =
Ahmed

MATLAB gave an error message and repeated the prompt. However, if the input
function is used to enter number but the user instead enters a letter or vice versa

 >> n = input ('Enter your Age: ')
Enter your Age: k
??? Error using ==> input
Undefined function or variable 'k' .

Mohammed Q. AliMohammed Q. AliMohammed Q. AliMohammed Q. Ali

Chapter 3 Programming in MATLAB
Enter your Age: 21
n =
 21

Separate input statements are necessary if more than one input is desired. For
example

 >> T = input('Enter the temperature: ');
Enter the temperature: 37
 >> s = input('Is it "C" or "F" ?','s');
Is it "C" or "F" ?C

 (and
The simplest output function in MATLAB is disp, which is used to display the

result of an expression or a string without assigning any value to the default variable
ans. However, disp does not allow formatting. For examples:

>> disp ('Hello') % displays string
Hello

 >> disp (6^4) % displays numeric expression
 1296

 >> disp ([2:8]) % displays vector
 2 3 4 5 6 7 8

 >> disp ([1:5 ; 5:5:25]) % displays matrix
 1 2 3 4 5
 5 10 15 20 25

 >> disp(' Col.{1} Col.{2} Col.{3}') , disp(rand(5,3)) % displays as table

 Col.{1} Col.{2} Col.{3}
 0.3181 0.6393 0.5225
 0.1192 0.5447 0.9937
 0.9398 0.6473 0.2187
 0.6456 0.5439 0.1058
 0.4795 0.7210 0.1097

Formatted output can be printed to the screen using the fprintf function. For
example:

 >> fprintf ('The 7! value is %d\n' , factorial(7))
The 7! value is 5040

Mohammed Q. AliMohammed Q. AliMohammed Q. AliMohammed Q. Ali

Chapter 3 Programming in MATLAB
 The fprintf function, first a string (called the format string) is passed, which
contains any text to be printed as well as formatting information for the expressions
to be printed. In this example, the %d is an example of format information. The
%d is sometimes called a placeholder; it specifies where the value of the
expression that is after the string is to be printed. The character in the placeholder
is called the conversion character, and it specifies the type of value that is being
printed. There are others of the simple placeholders:

Placeholder
(character)

Description Example

%d Format as a integer >> fprintf ('%d' , 4^5)
1024>>

%f Format as a floating point
value

>> fprintf ('%f' , sqrt(90.25))
9.500000>>

%g Format as the most compact
form (no trailing zero)

>> fprintf ('%g' , sqrt(90.25))
9.5>>

%e Format as a floating point
value in scientific notation

>> fprintf ('%e' , pi)
3.141593e+000>>

%s Format as a string
>> fprintf ('%s' , '3*8/2')
3*8/2>>

\n Insert a new line in the output
string

>> fprintf ('Welcome! \n this is MATLAB')
Welcome!
 this is MATLAB>>

\t Insert a tab in the output string >> fprintf ('Welcome! \t this is MATLAB')
Welcome! this is MATLAB>>

Notes :
 It’s important adding the character \n at the end of output string in order to

avoid the prompt (>>) from stick to the result as shown before.

 The character \n can also use in input function, for example:

>> h = input ('Enter \n The shape height :')
Enter
 The shape height :

 The character \n in form ‘\n\n’ use to get blank line in output, for example:

 >> fprintf ('Hello \n\n This is MATLAB \n')
Hello

 This is MATLAB

 A field width can also be included in the placeholder in fprintf , which
specifies how many characters total are to be used in printing. For example,
%5d would indicate a field width of 5 for printing an integer and %10s would
indicate a field width of 10 for a string. For floats, the number of decimal

Mohammed Q. AliMohammed Q. AliMohammed Q. AliMohammed Q. Ali

Chapter 3 Programming in MATLAB
places can also be specified; for example, %6.2f means a field width of 6
(including the decimal point and the decimal places) with two decimal
places. For floats, just the number of decimal places can also be specified;
for example, %.3f indicates three decimal places.

 >> fprintf ('The integer is %3d and the float is %6.2f \n' , 56 , 42.95897)
The integer is 56 and the float is 42.96

 Note that if the field width is wider than necessary, leading blanks are printed,
and if more decimal places are specified than necessary, trailing zeros are printed.

 For a vector, if a conversion character (%d, %f …) and the \n character are
in the format string, it will print in a column regardless of whether the vector
itself is a row vector or a column vector. For examples:

 >> v=1:5;
 >>fprintf ('%d' , v) , fprintf ('\n')
12345

 >> fprintf ('%d\n' , v)
1
2
3
4
5

 For matrices, Specifying one conversion character and then the \n character

will print the elements from the matrix in one column. The first values
printed are from the first column, then the second column, and so on. For
examples:

 >> mat=[1 2 3;4 0 6;7 9 8] % create (3 x 3) matrix
mat =
 1 2 3
 4 0 6
 7 9 8

 >>fprintf ('%d\n' , mat)
1
4
7
2
0
9
3
6
8

Mohammed Q. AliMohammed Q. AliMohammed Q. AliMohammed Q. Ali

Chapter 3 Programming in MATLAB
 To reshape the matrix to (3 x 3), three of %d characters are specified, the
fprintf will print three numbers across on each line of output and so on.

>> fprintf ('%d %d %d \n' , mat)
1 4 7
2 0 9
3 6 8

Example 3.3: write a program to find the cosine of angles (0,15,45,60,75,90) and
format the output result as : “The cosine of angle X is : Y “, named file
“AngleCosine”

Sol
clc
clear

theta=0:15:90; % generate angles (0-90) steps 15

cosine=cosd(theta); % find the cosine of angle

result= [theta ; cosine]; % merge the vectors to produce a matrix
fprintf('The cosine of angle %d is :%4.3f \n' ,result)

 >> AngleCosine
The cosine of angle 0 is :1.000
The cosine of angle 15 is :0.966
The cosine of angle 30 is :0.866
The cosine of angle 45 is :0.707
The cosine of angle 60 is :0.500
The cosine of angle 75 is :0.259
The cosine of angle 90 is :-0.000

Example 3.4: How many years (Y) needs to be a millionaire (Fv) when you
investment an amount of (N)$ with annual interest rate (R)% , write a program
based on equation: (using I/O statements and named file “investment”) �� � � ! � "#$
Sol :

1) Redefine the equation in terms of Y

$ � %& ���%& ! � "#

2) Write & run a program

clear
clc
N=input('The amount of Investment :');
R=input('The interest rate{%} :');
Fv=1000000;
Y=log(Fv/N)/log(1+R);
fprintf('\n The No. of years are :\t %0.2f \n' ,Y)
fprintf('\n Which is approximately :\t %d years \n' ,ceil(Y))

Mohammed Q. AliMohammed Q. AliMohammed Q. AliMohammed Q. Ali

Chapter 3 Programming in MATLAB
 >> investment
The amount of Investment :80000
The interest rate{%} :0.12

 The No. of years are : 22.29

 Which is approximately : 23 years

In MATLAB the result of a logical operation is 1 if it is true and 0 if it is false.
The relational operators (<, <=, >, >=, == and ~=) can be used to compare two
matrices of the same size or a vector with scalar. For examples:

Relational Operator Description
< Less than
> Greater than

<= Less than or equal to
>= Greater than or equal to
= = Equal to
~= Not equal to

 >> 3>8 % checks if 3 is greater than 8
ans =
 0

 >> x= 4<=7 % checks if 4 less or equal 7 and assigns answer to x
x =
 1

 >> y=(5>4)+(2<7)+(4*3==36/3) % sums the result of checking each parenthesis
y =
 3

 >> A=[1 0 8 2 -5]; B=[9 0 -4 1 2]; % create vectors A and B with same length
 >> C=A>=B % check if A elements is greater or equal to B elements
C =
 0 1 1 1 0

 >> D=B~=C % checks which of B elements is not equal to C elements
D
 1 1 1 0 1

>> E=B-A>0 % subtracts A from B and checks which element is greater than zero

Mohammed Q. AliMohammed Q. AliMohammed Q. AliMohammed Q. Ali

Chapter 3 Programming in MATLAB

% checks which v elements less than zero and assign to logical

vector Vn with 1s at positions where v elements are negative

E =
 1 0 0 0 1

 >> M = [9 5 1 0;3 6 -5 7;8 10 -6 -4] % creates (3x4) matrix
M =
 9 5 1 0
 3 6 -5 7
 8 10 -6 -4

>> H = M<5 % checks M elements if less than 5 and assigns results to matrix H
H =
 0 0 1 1
 1 0 1 0
 0 0 1 1

Notes :

 The vector with values of 0s and 1s which is the result of relational operation
are called logical vector. The real power of logical vectors is that they can
be used as on-off subscripts in vector expressions. Suppose that the problem
is not just to find out how many negative numbers are in the vector, but to
extract them for future use:

 >> v=[-2 3 4 -1 -6 2 8 9 -7 0 -5] % create a vector v
v =
 -2 3 4 -1 -6 2 8 9 -7 0 -5

 >> Vn = v<0
Vn =
 1 0 0 1 1 0 0 0 1 0 1

>> Vneg= v(Vn) % extracts the negative elements of v using Vn vector and assign to Vneg
Vneg =
 -2 -1 -6 -7 -5

>> Vneg=v(v<0) % the same result is done in one step
Vneg =
 -2 -1 -6 -7 -5

 The order of precedence in mathematical expression, the arithmetic
operators (+, -, *, /, \, ^) is higher than relational operators, whereas the
relational operators have the equal precedence and are evaluated from left to
right, parenthesis used to overcome the precedence. For examples:

 >> 6+1 <= 18/3 % the / and + executes first and then relational operator <=

Mohammed Q. AliMohammed Q. AliMohammed Q. AliMohammed Q. Ali

Chapter 3 Programming in MATLAB
ans =
 0

 >> 6+ (1<=18) /3 % the parenthesis executes first
ans =
 6.3333

 The relational operators can also uses with characters based on ASCII code.
For examples:

 >> 'n' > 'z'
ans =
 0

 >> 'n' > 'Z' % the ASCII code of ‘n’ is greater than ‘Z’
ans =
 1

>> 'Not' >= 'not' % check each character in both strings(must have same length)
ans =
 0 1 1

>> 'MatLab' < 'matlab'
ans =
 1 0 0 1 0 0

 The logical operators (& , | and ~) allow for the logical combination or negation
of relational operators. For examples:

Logical
operator Name Description

& AND Compares between two operands(A,B) if both are true,
the result is true(1) ;otherwise its false(0)

| OR Compares between two operands(A,B) if either one or
both are true, the result is true(1) ;otherwise its false(0)

~ NOT Checks one operand (A), if it is true (1), the result is
false(0), or vice versa.

 >> 8 & -1 % 8 AND -1 (both operands are nonzero)
ans =
 1

 >> 9 | 0 % 9 OR 0
ans =
 1

Mohammed Q. AliMohammed Q. AliMohammed Q. AliMohammed Q. Ali

Chapter 3 Programming in MATLAB

% logical NOT checks the results of multiplying element by

element of X with Y vectors

 >> ~12 % NOT 12 (which is returning zero)
ans =
 0

 >> R=10*((1&-2) - (0|3) + (~0)) % using logical operators in math expression
R =
 10
 >> X=[9 5 -4 0 6] ; Y=[1 0 7 -3 11]; % creates vectors X and Y (must have same length)
 >> Z=X&Y % compares X elements with Y elements using logical AND
Z =
 1 0 1 0 1

 >> Z= 0 | Y % compares scalar 0 with Y elements using logical OR
Z =
 1 0 1 1 1

 >> W= ~(X .* Y)
W =
 0 1 0 1 0

Notes:

 The order of precedence for logical operator NOT is higher than both
arithmetic and relational operations, whereas the logical AND and OR are
equal and lower than both arithmetic and relational operations, if two or
more operators have the same precedence is executed from left to right. For
examples:

 >> x = -1 ; y = 4; % defines variables x and y
 >> -2 < x < 0 % executes (-2<x) first, then (result < 0)
ans =
 0

 >> -2<x & x<0 % executes < operators first, then compares their results with AND operator
ans =
 1

 >> ~ (y>=1) % executes parenthesis first, then logical NOT
ans =
 0

 >> ~y<=1 % executes logical NOT first, then chicks result with <=
ans =
 1

Mohammed Q. AliMohammed Q. AliMohammed Q. AliMohammed Q. Ali

Chapter 3 Programming in MATLAB
 >> ~ ((x<-2) | (y>=4))
ans =
 0

 >> ~ (x<-2) | (y>=4)
ans =
 1

 MATLAB provides additional built-in logical functions:

Function Description Example
all(A) Determine whether all array

elements are nonzero or true
>> X=[3 4 1] ; Y=[8 0 7 5];
>> all(X) , all(Y)
ans =
 1
ans =
 0

any(A) Determine whether any array
elements are nonzero

>> X=[0 0 0] ; Y=[6 0 5];
>> any(X) , any(Y)
ans =
 0
ans =
 1

Find(A) Find indices and values of
nonzero elements

>> X=[0 9 1 0 3 0 5 7];
>> find(X)
ans =
 2 3 5 7 8

Find(A>K) Find indices of elements that
returns true of relational
operators

>> X=[0 9 1 0 3 0 5 7];
>> find(X>5)
ans =
 2 8

Example 3.5: Write a program to test the degrees of 40 students and find: (named
file “students”)

1) The number of students those degrees above 80
2) The number of students those degrees between 60 and 79
3) The number of students those failed and their degrees

Sol:
clear
clc
Degree= randi([25,100],1,40) % generate the degrees of 40 students their range (25-100)
DegreeAbove80=sum(Degree> 80); % find no. of students which degree>80 using sum function

Degree60to79=sum(Degree>=60 & Degree<80); % find no. of students which 60<degree<80

Failures=sum(Degree<50); % find no. of failures students
fprintf('\n') % format output results
disp('--')
fprintf('The no. of students with degree above 80 :
%d\n' ,DegreeAbove80)

% executes parentheses first, then compares results with OR and
finally uses logical NOT

% executes parentheses first, then uses logical NOT and finally
compares results with OR

Mohammed Q. AliMohammed Q. AliMohammed Q. AliMohammed Q. Ali

Chapter 3 Programming in MATLAB
fprintf('The no. of students with degrees 60 to 79 :
%d\n' ,Degree60to79)
fprintf('The no. of failures students: %d\n' ,Failures)
fprintf('And their degrees are :\n')
disp(Degree(Degree<50)) % display the degrees which are less than 50

 >> students
Degree =
 Columns 1 through 15
 61 85 42 62 93 68 89 81 69 43 75 31 72 75 80
 Columns 16 through 30
 92 99 83 69 95 69 26 34 90 61 89 40 66 72 27
 Columns 31 through 40
 71 52 28 62 39 34 40 36 39 28

--
The no. of students with degree above 80 : 10
The no. of students with degrees 60 to 79 : 14
The no. of failures students: 14
And their degrees are :
 42 43 31 26 34 40 27 28 39 34 40 36 39 28

Selection statements that test the results of relational or logical functions or
operators are the decision-making structures that allow the flow of command
execution to be controlled.
 MATLAB has two basic statements that allow choices: the if statement and the
switch statement. The if statement has optional else and elseif clauses for
branching. The if statement uses expressions that are logically true or false.
 There are two different loop statements in MATLAB: the for statement and the
while statement. In practice, the for statement usually is used as the counted loop,
and the while is used as the conditional loop.

 An if statement can be followed by an (or more) optional elseif... and an else
statement, which is very useful to test various condition. When using if...
elseif...else statements, there are few points to be considered:

 The if - end uses with one condition, the if – else – end uses with two
conditions and for more than two uses if – elseif – else – end.

 An if can have zero or one else and it must come after any elseif.
 An if can have zero to many elseif and they must come before the else.
 The nested if statements can use one if or elseif statement inside another if

or elseif statement(s). The syntax of if statement in MATLAB is:

Mohammed Q. AliMohammed Q. AliMohammed Q. AliMohammed Q. Ali

Chapter 3 Programming in MATLAB
if <expression 1>
 % Executes when the expression 1 is true
 <statement(s)>
elseif <expression 2>
 % Executes when the boolean expression 2 is true
 <statement(s)>
Elseif <expression 3>
 % Executes when the boolean expression 3 is true
 <statement(s)>
else
 % Executes when the none of the above condition is true
 <statement(s)>
end

Example 3.6 Write a script file to prompt the user to enter an integer, and then
display whether the integer is zero, positive or negative.(named file “testNumber”)

Sol:
n=input('Enter an integer : ');
if n>0
 disp('The number is Positive')
elseif n<0
 disp('The number is Negative')
else
 disp('The number is Zero')
end

 >>testNumber
Enter an integer : 9
The number is Positive

>>testNumber
Enter an integer : 0
The number is Zero

Example 3.7 Grades are to be assigned as follows:
A 80% - 100%
B 65% - 79%
C 50% - 64%.
 Write a script file to prompt the user to input a mark and display the appropriate
grade. If the user enters a number greater than 100 or less than zero, display a
message that the mark is invalid.(file name “testMark”

Sol:
mark=input('Enter the mark : ');
if mark > 100 | mark < 0

Mohammed Q. AliMohammed Q. AliMohammed Q. AliMohammed Q. Ali

Chapter 3 Programming in MATLAB
 disp('Invalid mark')
elseif mark >= 80
 disp('A')
elseif mark >= 65
 disp('B')
elseif mark >= 50
 disp('C')
else
 disp('Fail')
end

 >> testMark
Enter the mark : 58
C
 >> testMark
Enter the mark : 91
A
>> testMark
Enter the mark : 102
Invalid mark

Example 3.8: write a program to find the Y value when: (named file “Yvalue”)

$ �
'(
) �

�� � !� * � + �
� � � �,�� � -� � + � * .

Sol:
x=input('Enter the x value : ');
if x<-10 | x>7
 disp('Undefined the Y value')
elseif x>=-10 & x<0
 Y=2/x^3;
 fprintf('The Y value = %0.3f\n ' ,Y);
elseif x>0 & x<=7
 Y=nthroot(sqrt(x^2+4),3);
 fprintf('The Y value = %0.3f\n ' ,Y);
else
 fprintf('The Y value = %d\n ' ,2);
end

 >> Yvalue
Enter the x value : 9
Undefined the Y value

 >> Yvalue
Enter the x value : 0
The Y value = 2

Mohammed Q. AliMohammed Q. AliMohammed Q. AliMohammed Q. Ali

Chapter 3 Programming in MATLAB

 >> Yvalue
Enter the x value : -5
The Y value = -0.016

 >> Yvalue
Enter the x value : 1
The Y value = 1.308

 A switch block conditionally executes one set of statements from several
choices. Each choice is covered by a case statement. The switch block tests each
case until one of the cases is true.
 When a case is true, MATLAB executes the corresponding statements and then
exits the switch block. The otherwise block is optional and executes only when no
case is true. The syntax of switch statement in MATLAB is:
switch <switch_expression>
case <case_expression>
 <statement(s)>
case <case_expression>
 <statement(s)>
...
...
otherwise
 <statement(s)>
end

Example 3.9: Write a program to select a color by entering the 1st letter of its name:
And handle the invalid letter (named with “colortest”)

Sol:
color=input('Enter color letter : ' , 's');
switch color
 case { 'G' , 'g' }
 disp('The color is Green');
 case { 'Y' , 'y' }
 disp('The color is Yellow');
 case { 'R' , 'r' }

G Green
Y Yellow
W White
R Red
B Blue
C Cyan

Mohammed Q. AliMohammed Q. AliMohammed Q. AliMohammed Q. Ali

Chapter 3 Programming in MATLAB
 disp('The color is Red');
 case { 'W' , 'w' }
 disp('The color is White');
 case { 'B' , 'b' }
 disp('The color is Blue');
 case { 'C' , 'c' }
 disp('The color is Cyan');
 otherwise
 disp('Undefined Color');
end

>> colortest
Enter color letter : y
The color is Yellow

>> colortest
Enter color letter : b
The color is Blue

>> colortest
Enter color letter : R
The color is Red

Example 3.10: Write a program to display the name of day by giving the day
number as the following:

1 Saturday
2 Sunday
3 Monday
4 Tuesday
5 Wednesday
6 Thursday
7 Friday

And handle the invalid number (named file “dayname”)

Sol:
Nday=input('Enter The Day Number : ');
switch Nday
 case 1
 disp('The day is SATURDAY');
 case 2
 disp('The day is SUNDAY');
 case 3
 disp('The day is MONDAY');
 case 4
 disp('The day is TUESDAY');
 case 5
 disp('The day is WEDNESDAY');

Mohammed Q. AliMohammed Q. AliMohammed Q. AliMohammed Q. Ali

Chapter 3 Programming in MATLAB
 case 6
 disp('The day is THURSDAY');
 case 7
 disp('The day is FRIDAY');
 otherwise
 disp('Invalid');
end

>> dayname
Enter The Day Number : 3
The day is MONDAY

>> dayname
Enter The Day Number : 7
The day is FRIDAY

>> dayname
Enter The Day Number : 10
Invalid

A for loop is a repetition control structure that allows you to efficiently write
a loop that needs to execute a specific number of times. The syntax of for statement
in MATLAB is:

for index = initval : step : endval
 <statement(s)>
 ...
end

 Increments index by the value step on each iteration, or decrements when step
is negative, step is omitted when increment is 1. For examples:

>> for N=10:20 % print the N values range between (10→20)
fprintf ('value of N: %d\n', N);
end
value of N: 10
value of N: 11
value of N: 12
value of N: 13
value of N: 14
value of N: 15
value of N: 16
value of N: 17
value of N: 18
value of N: 19
value of N: 20

Mohammed Q. AliMohammed Q. AliMohammed Q. AliMohammed Q. Ali

Chapter 3 Programming in MATLAB

>> for A = [24,18,17,23,28] % display the values of A
disp(A)
end
 24
 18
 17
 23
 28

Example 3.11: Create a script file to find ∑ √��1&�1!

Sol:
N=input('Enter N value : ');
xsum=0;
for x=1:N
 xsum=xsum+sqrt(x);
end
disp(xsum)

Enter N value : 7
 13.4776

Note: MATLAB allows to use more than one for loop, each one inside another
loop. The syntax for a nested for loop statement in MATLAB is:
for m = 1:j
 for n = 1:k
 <statements>;
 end
end

Example 3.12: Create a script file to generate (N X N) matrix in form like:

Sol:
clear
N=input('Enter the square matrix size : ');
for i=1:N
 for j=1:N
 if mod(i+j,2)==0
 a(i,j)=1;
 else
 a(i,j)=0;
 end
 end
end
disp(a)

Mohammed Q. AliMohammed Q. AliMohammed Q. AliMohammed Q. Ali

Chapter 3 Programming in MATLAB

Enter the square matrix size : 5
 1 0 1 0 1
 0 1 0 1 0
 1 0 1 0 1
 0 1 0 1 0
 1 0 1 0 1

Example 3.13: Given two vectors x and y with random values, create a matrix A
whose elements are defined as Aij = xi . yj. Write a script file.

Sol:
clear;clc

x=randi([1,10],1,7); % generates row vector x(7)
y=randi([1,4],5,1); % generates column vector y(5)
for i=1:length(x)
 for j=1:length(y)
 A(i,j)=x(i)*y(j);
 end
end
disp(A)

The while loop repeatedly executes statements while condition is true. The
syntax of a while loop in MATLAB is:

while <expression>
 <statement(s)>
 …
End

 The while loop repeatedly executes program statement(s) as long as the
expression remains true.

Example 3.14: Write a program to compute the series:

2 � ! � !
� � !

� � ⋯ � !
& & 4 �

Sol:
clc;clear
N=input('Enter N value : ');
Y=0;i=1;
while i<=N
 Y=Y+1/i;
 i=i+1;
end
fprintf('Y= %.3f\n' ,Y)

Mohammed Q. AliMohammed Q. AliMohammed Q. AliMohammed Q. Ali

Chapter 3 Programming in MATLAB
Enter N value : 8
Y= 2.718

Example 3.15: Write a program to generate the series (1, 2, 4, 8, … , 1024) and
display it as a vector
Sol:
clear;clc;
n=0;i=1;
while 2^n<=1024
 A(i)=2^n;
 n=n +1;
 i=i+1;
end
disp(A')

 1
 2
 4
 8
 16
 32
 64
 128
 256
 512
 1024

Note: Also likes for loop, more than one while loop are used, one loop inside the
another loop. The syntax for a nested while loop statement in MATLAB is as
follows:

while <expression1>
 while <expression2>
 <statement(s)>
 end
end

Example 3.16: Write a program to display the multiplication table

Sol:
clc;clear;
x=1;
while x<=10
 y=1;
 while y<=10
 z(x,y)=x*y;
 y=y+1;
 end
 x=x+1;
end

Mohammed Q. AliMohammed Q. AliMohammed Q. AliMohammed Q. Ali

Chapter 3 Programming in MATLAB
disp(z);

1 2 3 4 5 6 7 8 9 10
2 4 6 8 10 12 14 16 18 20
3 6 9 12 15 18 21 24 27 30
4 8 12 16 20 24 28 32 36 40
5 10 15 20 25 30 35 40 45 50
6 12 18 24 30 36 42 48 54 60
7 14 21 28 35 42 49 56 63 70
8 16 24 32 40 48 56 64 72 80
9 18 27 36 45 54 63 72 81 90
10 20 30 40 50 60 70 80 90 100

The break statement terminates execution of for or while loop. Statements in
the loop that appear after the break statement are not executed. In nested loops,
break exits only from the loop in which it occurs. Control passes to the statement
following the end of that loop.
Example 3.17 Write a program to generate 100 random numbers range (1-50) use
rand function, stop the operation when number =33. Display the numbers until it
stopped

Sol:
clc;clear
counter=0;
for i=1:100
 x=((50- 1)*rand+1); % generate value range between(1-50)
 disp(x)
 counter=counter +1;
 if fix(x)==33 % the stop condition(convert to integer)
 fprintf('The no. of generated elements = %d\n
' ,counter)
 break ; % exit from loop
 end
end
 20.6923
 31.9646
 49.2766
 28.4144
 46.7460
 36.2968
 24.7179
 32.3125
 44.4942
 10.7381
 20.3729
 49.6166
 20.7152
 33.2840
The no. of generated elements = 14

Mohammed Q. AliMohammed Q. AliMohammed Q. AliMohammed Q. Ali

Chapter 3 Programming in MATLAB

 The continue statement is used for passing control to next iteration of for or
while loop. The continue statement in MATLAB works somewhat like the break
statement. Instead of forcing termination, however, 'continue' forces the next
iteration of the loop to take place, skipping any code in between.
Example 3.18: Write a program to generate 10 integer x values range (0 – 3) and

compute 2 � !
� � 4 �#, pass by when x=0. Find how many passes and display

the y values.

Sol:
clear;clc
counter=0;
i=1;
while i<=10

 x=randi([0,3]); % generates integer random numbers(0-3)
 y(i)=1/x;
 if (x==0)
 i=i+1;
 counter=counter+1;
 continue ;
 end
i=i+1;
end
disp(y')
fprintf('the no. of passes : %d\n' ,counter)

0.50
0.33
0.50
0.33
Inf
Inf
0.33
1.00
Inf

the no. of passes : 3

 A function is a group of statements that together perform a task. In MATLAB,
functions are defined in separate files. The name of the file and of the function
should be the same.
 Functions operate on variables within their own workspace, which is also called
the local workspace, separate from the workspace you access at the MATLAB
command prompt which is called the base workspace. Functions can accept more
than one input arguments and may return more than one output arguments.
Syntax of a function statement is:

function [out1, out2, ... , outN] = myfun (in1, in2, in3, ... , inN)

Mohammed Q. AliMohammed Q. AliMohammed Q. AliMohammed Q. Ali

Chapter 3 Programming in MATLAB
Example 3.19: Create a function file, named Nmax should be written in a file
named Nmax.m. It takes three numbers as argument and returns the maximum of
the numbers.

Sol
function max=Nmax(a,b,c)
% This function calculates the maximum of the
% three given numbers as input
if (a>b) & (a>c)
 max=a;
elseif (b>c)
 max=b;
else
 max=c;
end
end

 >> x= Nmax(12,35,1)
x =
 35
 >> x= Nmax(12,-35,1)
x =
 12
 >> x= Nmax(-12,-35,1)
x =
 1

Note: The comment lines that come right after the function statement provide the
help text. These lines are printed when type:

>> help Nmax
 This function calculates the maximum of the
 three given numbers as input

Example 3.20: Create a function to sort a matrix column by column ascending

Sol:
function B= sortBycol(array) % This function sorts a matrix column by column ascending
[m,n]=size(array);
V=reshape(array,1,m*n); % convert matrix to vector
V=sort(V);
B=reshape(V,m,n);
End

>> A=[9 5 1 0;7 6 3 4;2 10 12 11]
A =
 9 5 1 0
 7 6 3 4
 2 10 12 11

Comment describing
the function

Mohammed Q. AliMohammed Q. AliMohammed Q. AliMohammed Q. Ali

Chapter 3 Programming in MATLAB
>> sortBycol(A)
ans =
 0 3 6 10
 1 4 7 11
 2 5 9 12

An anonymous function is a very simple, one-line function. The advantage of
an anonymous function is that it does not have to be stored in an M-file, it can be
created in the Command Window or in any script. The syntax for an anonymous
function is:

fnhandle = @ (arguments) functionbody

 Where fnhandle stores the function handle; it is essentially a way of referring
to the function. The handle is assigned to this name using the @ operator. The
arguments, in parentheses, correspond to the argument(s) that are passed to the
function. For examples:

 >> power = @(x,n) x.^n; % defines function to compute xn (where x is scalar or vector)

 >> power (2,5) % computes 25

ans =
 32

 >> V=[2 3 6 1]; % creates vector V

 >> power (V,5) % computes the power for each elements of V
ans =
 32 243 7776 1

Example 3.21: Use an anonymous function to define:

1) ln
2) F° to C° temperature
3) Area of circle

Sol:

 >> ln = @(x) log(x); % defines ln
 >> ln(500) , log(500)
ans =
 6.2146
ans =
 6.2146

Mohammed Q. AliMohammed Q. AliMohammed Q. AliMohammed Q. Ali

Chapter 3 Programming in MATLAB

 >> FtoC = @(f) (f-32)/1.8; % defines conversion function
 >> FtoC(110) % converts 110 F°
ans =
 43.3333
 >> FtoC(0) % converts 0 F°
ans =
 -17.7778

 >> circlarea = @ (radius) pi * radius .^2; % defines function area = πr2

 >> circlarea (8)
ans =
 201.0619
>> circlarea ([5 9 3 6])
ans =
 78.5398 254.4690 28.2743 113.0973

Notes: Function handles can also be created for functions other than anonymous
functions, both built-in and user defined functions. For example, the following
would create a function handle for the built-in factorial function:

>> Fact = @factorial;
>> Fact(8)
ans =
 40320

 Any function other than an anonymous function must be defined within a file.
Each function file contains a required primary function that appears first and any
number of optional sub-functions that comes after the primary function and used
by it. Primary functions can be called from outside of the file that defines them,
either from command line or from other functions, but sub-functions cannot be
called from command line or other functions, outside the function file. Sub-
functions are visible only to the primary function and other sub-functions within
the function file that defines them.

Example 3.22 Write a function named quadratic that would calculate the roots of
a quadratic equation. The function file quadratic.m will contain the primary
function quadratic and the sub-function disc, which calculates the discriminant.

Sol:
Function [x1,x2]= quadratic(a,b,c)
%this function returns the roots of a quadratic equ ation.
%It takes 3 input arguments which are:
%the co-efficients of x2, x and the constant

Mohammed Q. AliMohammed Q. AliMohammed Q. AliMohammed Q. Ali

Chapter 3 Programming in MATLAB
d = disc(a,b,c);
x1 =(- b + d)/(2*a);
x2 =(-b - d)/(2*a);
end % end of quadratic(primary function)

function dis = disc(a,b,c) % function calculates the discriminant
dis = sqrt(b^2- 4*a*c);
end % end of sub-function

 >> [r1,r2] = quadratic(-3,6,1)
r1 =
 -0.1547
r2 =
 2.1547

Mohammed Q. AliMohammed Q. AliMohammed Q. AliMohammed Q. Ali

Chapter 3 Programming in MATLAB

Exercises

Q1) Write an anonymous function to calculate and return the Volume of:
 Cube
 Cylinder
 Sphere
 Pyramid

Q2) Write an anonymous function to implement this. Compare yours to the

built-in function sinh.
Hyperbolic sine(x)=(ex – e-x)/2

Q3) Write a function areaperim that will calculate both the area and perimeter

of a polygon. For a polygon with n sides inscribed in a circle with a radius
of r, the area A and perimeter P of the polygon can be found by:

 5 � !
� &6� 78& 9:

&; < � �&6 78& 9:
&;

Q4) The Fibonacci numbers is a sequence of numbers Fi: 0 1 1 2 3 5 8 ...

Where
a. F0 = 0
b. F1 = 1
c. Fn = Fn-2 + Fn-1 if n > 1

Write a function to implement this definition. The function will receive one
integer argument n, and it will return one integer value, which is the nth
Fibonacci number.

Q5) Write a function conevol to calculate the cone volume which is given by:

= � !
� :6� >

Where r is the radius of the circular base and h is the height of the cone

Q6) A closed cylinder is being constructed of a material that costs a dollar

amount per square foot. Write a function that will calculate and return the
cost of the material, rounded up to the nearest square foot. The total surface
area for the closed cylinder is: ?5 � �:6� � �:6>
Where r is the radius and h is the height of the cylinder

Q7) Write a simple script that will calculate the volume of a hollow sphere

that is -:
� 6�� � 6!�#

Mohammed Q. AliMohammed Q. AliMohammed Q. AliMohammed Q. Ali

Chapter 3 Programming in MATLAB
Where r1 is the inner radius and r0 is the outer radius. Assign a value to a
variable for the inner radius, and also assign a value to another variable for
the outer radius. Then, using these variables, assign the volume to a third
variable.

Q8) Write a function nexthour that will receive one integer argument, which
is an hour of the day, and will return the next hour. This assumes a 12-hour
clock, so for example the next hour after 12 would be 1. Here are two
examples of calling this function.

>> fprintf(‘The next hour will be %d.\n’,nexthour(3))
The next hour will be 4.

>> fprintf(‘The next hour will be %d.\n’,nexthour(12))
The next hour will be 1.

Q9) Write a script to calculate the volume of a pyramid, which is (1/3 * base

* height), where the base is (length * width). Prompt the user to enter values
for the length, width , and the height and then calculate the volume of the
pyramid. When the user enters each value, he or she will then be prompted
also for either i for inches, or c for centimeters. (Note: 2.54cm = 1 inch). The
script should print the volume in cubic inches with three decimal places. As
an example, the format will be:

This program will calculate the volume of a pyramid.
Enter the length of the base: 50
Is that i or c? i
Enter the width of the base: 6
Is that i or c? c
Enter the height: 4
Is that i or c? i
The volume of the pyramid is xxx.xxx cubic inches.

Q10) Write a function createvec_m_to_n that will create and return a vector
of integers from m to n (where m is the first input argument and n is the
second), regardless of whether m is less than n or greater than n. If m is
equal to n, the vector will just be 1 × 1 or a scalar. Here are some
examples of calling the function:

>> createvec_m_to_n(8,5)
ans =
 5 6 7 8
>> createvec_m_to_n(6,6)
ans =
 6
>> result = createvec_m_to_n(4,5)
result =
 4 5
>> help createvec_m_to_n
Creates a vector of integers from m to n

Mohammed Q. AliMohammed Q. AliMohammed Q. AliMohammed Q. Ali

Chapter 3 Programming in MATLAB
Q11) Write a script that will generate one random integer, and will print

whether the random integer is an even or an odd number.

Q12) A Pythagorean triple is a set of positive integers (a,b,c) such that a2 + b2

= c2. Write a function ispythag that will receive three positive integers (a, b,
c in that order) and will return 1 for true if they form a Pythagorean triple,
or 0 for false if not.

Q13) Write a script area_menu that will print a list consisting of cylinder,
circle, and rectangle. It prompts the user to choose one, and then prompts
the user for the appropriate quantities (e.g., the radius of the circle) and then
prints its area. If the user enters an invalid choice, the script simply prints an
error message. The script use switch statement to accomplish this. Here are
two examples of running it (units are assumed to be inches).

>> area_menu
Menu
1. Cylinder
2. Circle
3. Rectangle
Please choose one: 2
Enter the radius of the circle: 4.1
The area is 52.81

>> area_menu
Menu
1. Cylinder
2. Circle
3. Rectangle
Please choose one: 3
Enter the length: 4
Enter the width: 6
The area is 24.00

Q14) Let x = [3 16 9 12 -1 0 -12 9 6 1]. Provide the command(s) that will:
 set the positive values of x to zero
 set values that are multiples of 3 to 3
 multiply the even values of x by 5
 extract the values of x that are greater than 10 into a vector called y
 extract the values of x that are less than 0 into a vector called z

Q15) Let A = randi ([-10,10],6,6). Perform the following (using find

function):
 find the indices and list all elements of A which are smaller than -3
 find the indices and list all elements of A which are smaller than 5

and larger than -1
 remove those columns of A which contain at least one 0 element.

Mohammed Q. AliMohammed Q. AliMohammed Q. AliMohammed Q. Ali

Chapter 3 Programming in MATLAB
Q16) Assume that the months are represented by numbers from 1 to 12. Write

a script that asks you to provide a month and returns the number of days in
that particular month. Alternatively, write a script that asks you to provide a
month name (e.g. 'June') instead of a number. Use the switch function.

Q17) Write a for loop that will print the column of real numbers from 1.1 to

2.9 in steps of 0.1.

Q18) Write a function sumsteps2 that calculates and returns the sum of 1 to n

in steps of 2, where n is an argument passed to the function. Do this using a
for loop

Q19) Write a function prodby2 that will receive a value of a positive integer
n and will calculate and return the product of the odd integers from 1 to n
(or from 1 to n–1 if n is even).

Q20) Write a function called geomser that will receive values of r and n, and

will calculate and return the sum of the geometric series:
1 + r + r2 + r3 + r4 + ... + rn

Q21) Create a 1 × 6 vector of random integers, each in the range from 1 to 20.
Find the minimum and maximum values in the vector, also find the sum of
vector.

Q22) Write a function that will receive a matrix as an input argument, and

will calculate and return the overall average of all numbers in the matrix.

Q23) Create a vector of five random integers, each in the range from –10 to
10. Perform each of the following:

 Subtract 3 from each element.
 Count how many are positive.
 Get the absolute value of each element.
 Find the maximum.

Q24) Write a script that will print the following multiplication table:

1
2 4
3 6 9
4 8 12 16
5 10 15 20 25

Q25) The mathematician Euler proved the following:

:�
@ � ! � !

- � !
A � !

!@ � ⋯

Loop until the sum is close to :�/@

Mohammed Q. AliMohammed Q. AliMohammed Q. AliMohammed Q. Ali

Chapter 3 Programming in MATLAB

Q26) Write a script that will continue prompting the user for positive numbers,
and storing them in a vector variable, until the user types a negative number.

Q27) An approximation for the exponential function can be found using what

is called a Maclaurin series:

C� D ! � �!
!! � ��

�! � ��
�! � ⋯

Write a program to investigate the value of ex and the exp function.

Q28) The area of a triangle is:

F6CF � ,7 7 � F# 7 � G# 7 � H#

Where a, b, and c are the lengths of the sides of the triangle, and s is equal
to half the sum of the lengths of the three sides of the triangle. Write a script
to calculate and print the area of the triangle.

Q29) Write a function convert_sec to convert seconds in term of (hours :

minutes : seconds)

Q30) Determine the sum of the first 50 squared numbers with a control loop.

Q31) Given x = [4 1 6 -1 -2 2] and y = [6 2 -7 1 5 -1], compute matrices
whose elements are created according to the following formulas:

 aij = yi / xj
 bi = xi yi
 cij = xi /(2 + xi + yj)
 dij = 1/ max(xi; yj)

Q32) Write a script that transposes a matrix A. Check its correctness with the

Matlab operation: A' .

Q33) Create an m-by-n array of random numbers (use rand function). Move

through the array, element by element, and set any value that is less than 0.5
to 0 and any value that is greater than or equal to 0.5 to 1.

Mohammed Q. AliMohammed Q. AliMohammed Q. AliMohammed Q. Ali

Chapter		4											Symbolic	Mathematics	and	Calculus	

Symbolic mathematics is used regularly in math, engineering, and science
classes. It is often preferable to manipulate equations symbolically before you
substitute values for variables. Its means doing mathematics on symbols (not
numbers!).For example, a + a is 2a. The symbolic math functions are in the
Symbolic Math Toolbox in MATLAB. Toolboxes contain related functions and are
add-ons to MATLAB. The Symbolic Math Toolbox includes an alternative method
for solving equations.

Before we can solve any equations, we need to create some symbolic variables.
Simple symbolic variables can be created in two ways. For example, to create the
symbolic variable x , type either

>> syms x
OR
>> x = sym ('x');

Both techniques set the character 'x' equal to the symbolic variable x. More
complicated variables can be created by using existing symbolic variables, as in
the expression:

>> y = 2*(x - 3)^2/(x^2 + 6*x -9)

Notice that both x and y are symbolic variables, whos command showing that:

>> whos
 Name Size Bytes Class Attribu tes

 x 1x1 60 sym
 y 1x1 60 sym

 The syms command is particularly convenient, because it can be used to create
multiple symbolic variables at the same time, as with the command

>>syms pi r h

 These variables could be combined mathematically to create another symbolic
variable, Vcylinder :

>> Vcylinder=pi*r^2*h
 The sym function can be used to create either an entire expression or an entire
equation. For example

Mohammed Q. AliMohammed Q. AliMohammed Q. AliMohammed Q. Ali

Chapter		4											Symbolic	Mathematics	and	Calculus	
>> E = sym ('m*c^2')

 Creates a symbolic variable named E. Notice that m and c are not listed in the
workspace window, they have not been specifically defined as symbolic variables.
Instead, the input to sym was a character string, identified by the single quotes
inside the function.

>> whos
 Name Size Bytes Class Attributes

 Vcylinder 1x1 60 sym
 h 1x1 60 sym
 r 1x1 60 sym

 All basic mathematical operations can be performed on symbolic variables and
expressions (e.g., add, subtract, multiply, divide, raise to a power, etc.). For
examples:

 >> A=sym('x^2');
 >> B=sym('x^4');
 >> A/B
ans =
1/x^2

 >> sqrt(B)
ans =
(x^4)^(1/2)

 >> A^3
ans =
x^6

 >> B*A
ans =
x^6

 >> A + sym('5*x^2') % adding the x2 and 5x2 to result in 6x2
ans =
6*x^2

 >> sym ('z^3 + 2*z^3')
ans =
3*z^3

Mohammed Q. AliMohammed Q. AliMohammed Q. AliMohammed Q. Ali

Chapter		4											Symbolic	Mathematics	and	Calculus	
Example 4.1: Generate symbolic series:
 � � �			��		��		��…	��

� �
��			

��			

!�…	

���	

Sol:
 >> syms x
 >> n=7;
 >> y=x.^(1:n) % uses element by element .^ with variable x
y =
[x, x^2, x^3, x^4, x^5, x^6, x^7]

>> n=16;
>> z=1./(x*(2:2:n)) % uses element by element ./ with variable x
z =
[1/(2*x), 1/(4*x), 1/(6*x), 1/(8*x), 1/(10*x), 1/(12*x), 1/(14*x), 1/(16*x)]

 Notice that the series results appeared as vectors. Also the sym function uses
to create the symbolic matrix. For examples:

 >> A= sym('a' , 3) % creates a matrix (3x3) of symbolic variable a
A =
[a1_1, a1_2, a1_3]
[a2_1, a2_2, a2_3]
[a3_1, a3_2, a3_3]

 >> A= sym('a' , [3 5]) % creates a matrix (3x5) of symbolic variable a
A =
[a1_1, a1_2, a1_3, a1_4, a1_5]
[a2_1, a2_2, a2_3, a2_4, a2_5]
[a3_1, a3_2, a3_3, a3_4, a3_5]

 >> A= sym ('a%d%d' , [3 5]) % approve the appearance by removing underscore
A =
[a11, a12, a13, a14, a15]
[a21, a22, a23, a24, a25]
[a31, a32, a33, a34, a35]

Example 4.2: Use an anonymous function to create a symbolic matrix as shown:

"#
##
$ 1
1 ∗ 1 ⋯ 1

1 ∗ (⋮ ⋱ ⋮1
+ ∗ 1 ⋯ 1

(∗ +,
--
-.

Mohammed Q. AliMohammed Q. AliMohammed Q. AliMohammed Q. Ali

Chapter		4											Symbolic	Mathematics	and	Calculus	

Sol:
 >> SymbolicMatrix=@(m,n) sym(1./((1:m)'*(1:n)));
 >> SymbolicMatrix(3,5)
ans =
[1, 1/2, 1/3, 1/4, 1/5]
[1/2, 1/4, 1/6, 1/8, 1/10]
[1/3, 1/6, 1/9, 1/12, 1/15]

Note: In symbolic expressions the real numbers are converted to rational values,
for examples:

>> sym (2.5 + 3.75)
ans =
25/4

>> sym(sqrt(5.5))
ans =
(2^(1/2)*11^(1/2))/2

>> sym(9.7^2/2)
ans =
9409/200

There are several functions that work with expressions, and simplify the terms
such as:

The simplify function does whatever it can to simplify expressions, including
gathering like terms. For example:

 >> y=sym ('x^2+3*x-5=1');
>> simplify (y)
ans =
x*(x + 3) = 6

>> z = sym ('3*x-(x+3)*(x-3)^2');
>> simplify (z)
ans =
3*x - (x - 3)^2*(x + 3)

 >> w = sym ('x^3-1 = (x-3)*(x+3)');
>> simplify (w)
ans =

Mohammed Q. AliMohammed Q. AliMohammed Q. AliMohammed Q. Ali

Chapter		4											Symbolic	Mathematics	and	Calculus	
x^3 + 8 = x^2
 >> syms x
 >> simplify (cos(x)^2 + sin(x)^2)
ans =
1

>> simplify (tan(x)^2 - sec(x)^2)
ans =
-1

The expand function multiplies out all the portions of the expression or
equation. For examples:

 >> syms x
 >> expand ((x-2)*(x-4))
ans =
x^2 - 6*x + 8

 >> syms y
 >> expand (sin(x+y))
ans =
cos(x)*sin(y) + cos(y)*sin(x)

>> expand ((x+8)^3)
ans =
x^3 + 24*x^2 + 192*x + 512

 >> y = (1-x)^3
y =
-(x - 1)^3

 >> expand (y)
ans =
- x^3 + 3*x^2 - 3*x + 1

 The factor function uses to analysis the equations to their factors. For
examples:

 >> syms x
 >> factor (x^3-1)
ans =
(x - 1)*(x^2 + x + 1)

 >> syms y

Mohammed Q. AliMohammed Q. AliMohammed Q. AliMohammed Q. Ali

Chapter		4											Symbolic	Mathematics	and	Calculus	
 >> factor (x^4-y^2)
ans =
(x^2 - y)*(x^2 + y)

>> factor (sym('15236987456')) % factors symbolic number
ans =
 2^6*173*1376173

 The collect function uses to collect coefficients. For examples:

 >> syms x,y
 >> collect ((x-1)^2*(x+1))
ans =
x^3 - x^2 - x + 1

 >> collect ((x^2-x^3)^2-4)
ans =
x^6 - 2*x^5 + x^4 - 4

 >> collect ((x^2-x^3)^2*(y-1))
ans =
(y - 1)*x^6 + (2 - 2*y)*x^5 + (y - 1)*x^4

>> collect ((x^3-x^2)^2 - (y-1)^3 , y) % collects y coefficient only
ans =
- y^3 + 3*y^2 - 3*y + (x^2 - x^3)^2 + 1

The subs function will substitute a value for a symbolic variable in an
expression or in an equation. For examples:

 >> myexp = x^3 + 3*x^2 - 2
myexp =
x^3 + 3*x^2 - 2

 >> x = 3;
 >> subs (myexp,x)
ans =
 52

>> syms x y
>> subs (x^2-y^2+x*y-3 , x , 2) % substitutes variable x only with 2
ans =

Mohammed Q. AliMohammed Q. AliMohammed Q. AliMohammed Q. Ali

Chapter		4											Symbolic	Mathematics	and	Calculus	
- y^2 + 2*y + 1

>> subs (x^2-y^2+x*y-3,{x , y},{3 , -2}) % substitutes variables x and y with (3 , -2)
ans =
 -4

 A highly useful function in the symbolic toolbox is solve. It can be used to
determine the roots of expressions, to find numerical answers when there is a single
variable, and to solve for an unknown symbolically. The solve function can also
solve systems of equations, the solve function allows the user to find analytical
solutions to a variety of problems.

 The function solve solves an equation and returns the root(s) as symbolic
expressions. The solution can be converted to numbers using any numeric function,
such as double, for example:

 >> syms x
 >> R = solve ('2*x^2 + x = 6')
R =
 -2
 3/2

 >> double (R) % double function converts symbolic results to real numbers
ans =
 -2.0000
 1.5000

 The solve function sets the expression equal to zero and solves for the roots.
For example:

 >> solve ('3*x^2 + x')
ans =
 -1/3
 0

 If there is more than one variable, MATLAB preferentially solves for x. If
there is no x in the expression, MATLAB finds the variable closest to x. For example:

 >> solve ('a*x^2+b*x +c')
ans =
 -(b + (b^2 - 4*a*c)^(1/2))/(2*a)
 -(b - (b^2 - 4*a*c)^(1/2))/(2*a)

However, it is possible to specify which variable to solve for:

Mohammed Q. AliMohammed Q. AliMohammed Q. AliMohammed Q. Ali

Chapter		4											Symbolic	Mathematics	and	Calculus	

 >> solve ('a*x^2+b*x +c', 'a') % solves for variable a
ans =
-(c + b*x)/x^2

 MATLAB can also solve sets of equations. In this example, the solutions for x,
y, and z are returned as a structure consisting of fields for x, y, and z. The individual
solutions are symbolic expressions stored in fields of the structure.

 >> R=solve ('4*x-2*y+z=7' , 'x+y+5*z=10' , '-2*x+3*y-z=2')
R =
 x: [1x1 sym]
 y: [1x1 sym]
 z: [1x1 sym]

 To refer to the individual solutions, which are in the structure fields, the dot
operator (.) is used.

 >> x = R.x % returns the value of variable x using (.) operation
x =
 124/41

>> y = R.y % returns the value of variable y using (.) operation
y =
 121/41

>> z = R.z % returns the value of variable z using (.) operation
z =
 33/41

 The double function can then be used to covert the symbolic expressions to
numbers, and store the results from the three unknowns in a vector.

 >> double ([x y z])
ans =
 3.0244 2.9512 0.8049

 MATLAB provides various ways for solving problems of differential and
integral calculus, solving differential equations of any degree and calculation of
limits. Best of all, you can easily plot the graphs of complex functions and check
maxima, minima and other stationery points on a graph by solving the original
function, as well as its derivative. We will deal with the problems of calculus, and
discuss pre-calculus concepts i.e., calculating limits of functions and verifying the

Mohammed Q. AliMohammed Q. AliMohammed Q. AliMohammed Q. Ali

Chapter		4											Symbolic	Mathematics	and	Calculus	
properties of limits. We will also discuss solving differential equations. Finally, we
will discuss integral calculus.

 The limit function takes expression as an argument and finds the limit of the
expression as the independent variable goes to zero. For examples:

 >> syms x
 >> limit ((x^3+5)/(x^4+7)) % x tends to zero as default
ans =
 5/7

 >> limit ((x -3)/(x-1) , -1) % x tends to -1
ans =
 2

Algebraic Limit Theorem provides some basic properties of limits. These are as
follows:

Example 4.3: Two functions: f(x) = (3x + 5)/(x - 3) and g(x) = x2 + 1. Calculate
the limits of the functions as x tends to 4, of both functions and verify the basic
properties of limits using these two functions and MATLAB.

 >> syms x
 >> f = (3*x +5)/(x-3);
 >> g = x^2+1;
 >> lim_f = limit (f,4)
lim_f =

17

 >> lim_g = limit (g,4)
lim_g =

17

 >> limAdd = limit (f + g,4)
limAdd =

34

Mohammed Q. AliMohammed Q. AliMohammed Q. AliMohammed Q. Ali

Chapter		4											Symbolic	Mathematics	and	Calculus	
 >> limSub = limit (f - g,4)
limSub =

0

 >> limMulti = limit (f * g,4)
limMulti =

289

>> limDiv = limit (f / g,4)
limDiv =

1

 When limits of a function f(x) has discontinuity at x = a. This leads to the
concept of left-handed and right-handed limits. A left-handed limit is defined as
the limit as x → a, from the left, i.e., x approaches a, for values of x < a. A right-
handed limit is defined as the limit as x → a, from the right, i.e., x approaches a,
for values of x > a. When the left-handed limit and right-handed limits are not
equal, the limit does not exist. For example:

>> f =(x -3)/abs(x-3);
>> left_lim = limit (f, x, 3, 'left')
left_lim =

-1

>> right_lim = limit (f, x, 3, 'right')
right_lim =

1

 MATLAB provides the diff function for computing symbolic derivatives. In
its simplest form, for examples:

 >> syms t
 >> f = 3*t^2+2*t^(- 2);
 >> diff (f)
ans =

6*t - 4/t^3

 >> syms x
 >> diff ((x^2 + 3)*(x + 2))
ans =

2*x*(x + 2) + x^2 + 3

 >> der = diff ((2*t^2 + 3*t)/(t^3 + 1))
der =

Mohammed Q. AliMohammed Q. AliMohammed Q. AliMohammed Q. Ali

Chapter		4											Symbolic	Mathematics	and	Calculus	
(4*t + 3)/(t^3 + 1) - (3*t^2*(2*t^2 + 3*t))/(t^3 + 1)^2

>> diff (cos(x)^2)
ans =

-2*cos(x)*sin(x)

 >> diff(exp(3*x^3))
ans =

9*x^2*exp(3*x^3)

 >> diff (log(t))
ans =

1/t

 >> diff (log10(t))
ans =

1/(t*log(10))

To compute higher derivatives of a function f, we use the syntax: diff(f,n) . For
examples:

 >> f=2*x^3-3*x^2+4*x- 1;
 >> der1= diff (f)
der1 =

6*x^2 - 6*x + 4

>> der2= diff(f,2)
der2 =

12*x - 6

>> der3= diff(f,3)
der3 =

12

The basic rules of derivatives for function f and g are:

Mohammed Q. AliMohammed Q. AliMohammed Q. AliMohammed Q. Ali

Chapter		4											Symbolic	Mathematics	and	Calculus	

Example 4.4: Two functions f(x)=2x2-x+2 and g(x)=3x3-8, prove the product rule
(f . g)'=f'.g + f . g'. Write a program to verify the result.

Sol:
syms x
f=2*x^2- x+2; % defining f(x)=2x2-x+2
g=3*x^3- 3*x; % defining g(x)=3x3-3x
lhs=diff(f*g);
rhs= diff(f)*g+diff(g)*f;
if lhs==rhs % verify the product role of derivative
 disp('the LHS is equal RHS and the result is :')
 disp(lhs)
else
 disp('there is an Error')
end

the LHS is equal RHS and the result is :
(9*x^2 - 3)*(2*x^2 - x + 2) - (4*x - 1)*(3*x - 3*x^3)

Example 4.5: Write a script to solve a problem. Given that a function y = f(x) = 3
sin(x) + 7 cos (5x). We will have to find out whether the equation f" + f = -5cos
(2x) holds true.

Sol:
syms x

y =3*sin(x)+7*cos(5*x); % defining the function

lhs = diff(y,2)+y; % evaluting the lhs of the equation

rhs =- 5*cos(2*x); % rhs of the equation
if lhs==rhs
 disp('Yes, the equation holds true');
else
 disp('No, the equation does not hold true');
end
disp('Value of LHS is: ')
disp(lhs);

No, the equation does not hold true
Value of LHS is:
-168*cos(5*x)

Note: MATLAB provides the dsolve function for solving differential equations
symbolically. The most basic form of the dsolve function for finding the solution
to a single equation is: dsolve ('eqn') where eqn is a text string used to enter the
equation. It returns a symbolic solution with default independent variable is t and a

Mohammed Q. AliMohammed Q. AliMohammed Q. AliMohammed Q. Ali

Chapter		4											Symbolic	Mathematics	and	Calculus	
set of arbitrary constants that MATLAB labels C1, C2, and so on. The equation:
f"(x) + 2f'(x) = 5sin3x should be entered as: 'D2y + 2Dy = 5*sin(3*x)' where
derivatives are indicated with a “D” . For example, the 1st differential equation:
y' =5y

 >> s = dsolve ('Dy = 5*y')
s =
 C2*exp(5*t)

For 2nd differential equation: y" - y = 0 , y(0) = -1 , y'(0) = 2.

 >> dsolve ('D2y - y = 0' , 'y(0) = -1' , 'Dy(0) = 2')
ans =
 exp(t)/2 - 3/(2*exp(t))

To substitute the variable t with any other variables, the expression should be:

 >> dsolve ('D2y - y = 0' , 'y(0) = -1' , 'Dy(0) = 2' , 'x')
ans =
 exp(x)/2 - 3/(2*exp(x))

 MATLAB provides an int function for calculating integral of an expression.
For examples:

 >> syms x
 >> f=2*x;
 >> int (f)
ans =
 x^2

 >> syms x n
 >> int(n^x)
ans =
 n^x/log(n)

 >> int (x^n)
ans =
 piecewise([n = -1, log(x)], [n <> -1, x^(n + 1)/(n + 1)])

 >> f= sin(n*x);
 >> int(f)
ans =
 -cos(n*x)/n

Mohammed Q. AliMohammed Q. AliMohammed Q. AliMohammed Q. Ali

Chapter		4											Symbolic	Mathematics	and	Calculus	

 >> syms a t
 >> int (a*cos(pi*t))
ans =
 (a*sin(pi*t))/pi

 >> syms x
 >> f= int (x^5*cos(5*x))
f =
(24*cos(5*x))/3125 + (24*x*sin(5*x))/625 - (12*x^2*cos(5*x))/125
+ (x^4*cos(5*x))/5 - (4*x^3*sin(5*x))/25 + (x^5*sin(5*x))/5

 As shown before, the result of integration function seems difficult to understand,
so MATLAB provides the pretty function which returns an expression in a more
readable format, for example:

 >> pretty(f)
 2 4 3 5
 24 cos(5 x) 24 x sin(5 x) 12 x cos(5 x) x cos(5 x) 4 x sin(5 x) x sin(5 x)
 ----------- + ------------- - -------------- + ----------- - ------------- + -----------
 3125 625 125 5 25 5

 The int function can be used for definite integration by passing the limits over
which you want to calculate the integral. To calculate:

The syntax of int function is: int(x,a,b). For example, to calculate the value

of / �0�1
�

 >> syms x
 >> int (x,2,9)
ans =
 77/2

Example 4.6: Calculate the area enclosed between the x-axis, and the curve y =
x3−2x+5 and the ordinates x = 1 and x = 2.

Sol:
The required area is given by : and the commands are:
>> syms x
>> f =x^3-2*x+5;
>> area=int(f,1,2)
area =
 23/4

>> disp('Area = '), disp (double(area)) % converts and displays the result to a real number

Area =

Mohammed Q. AliMohammed Q. AliMohammed Q. AliMohammed Q. Ali

Chapter		4											Symbolic	Mathematics	and	Calculus	
 5.7500

Example 4.7: Find the area under the curve: f(x) = x2 cos(x) for −4 ≤ x ≤ 9.

Sol:
 >> f=x^2*cos(x);
 >> area=int (f,-4,9)
area =
 8*cos(4) + 18*cos(9) + 14*sin(4) + 79*sin(9)

>> fprintf ('the area = %0.3f \n', double(area))
the area = 0.333

Mohammed Q. AliMohammed Q. AliMohammed Q. AliMohammed Q. Ali

Chapter		4											Symbolic	Mathematics	and	Calculus	

Exercises

Q1) Create the following symbolic expressions using either the sym or syms
functions:

Q2) Use the symbolic expressions from Q1 to find:
1) Multiply I and II and named result y1
2) Divide I by II and named result y2
3) Add III and IV and named result y3
4) Multiply VII and VIII , named result y4
5) Divide VII by VIII , named result y5
6) Use the factor, expand, collect and simplify functions on y1 ,y2 , y3 , y4

and y5.
7) Find the final result of VII ,VIII and y5 when x=30° and y=70°

Q3) Define series symbolically :

 	 �	 		

� 		

�…	

�	

�

 2�	 		
�

�2�	 		
3

�2�…	
4�5�6

�24�5 6	

 7 		 7
�	 		7

1…7

��	

8
�	 		

�8
�	 		

�8
� …	

�8
�

�
�	 		

��
��	 		

��
�3…	

��
���9 	

Q4) Use the variables and expressions in Q1:

 Use the solve function to solve I and II
 Use the solve function to solve III , for both x and a,
 Find the value of x and a by solving both II and III . Then find the same

values when (exp. II equals 3) and (exp. III equals 5)

I. �� 7
II. 4� : 6�
III. ;�� 7 �

IV. ;�� : <� : =

V. ;�� : <�� : =� : 0

VI.
��>��

;	��4�<9=6
VII. ?@��� : =A?�

VIII. B;��� : ?@��
?C=�

Mohammed Q. AliMohammed Q. AliMohammed Q. AliMohammed Q. Ali

Chapter		4											Symbolic	Mathematics	and	Calculus	
Q5) Consider the following system of linear equations:

5x + 6y - 3z = 10
3x - 3y + 2z = 14
2x - 4y - 12z = 24

Use the solve function to solve for x, y, and z, resolve equations using linear
algebra techniques.

Q6) Consider the following nonlinear system of equations:

x2 + 5y - 3z3 = 15
4x + y2 – z = 10
x + y + z = 15

Solve the nonlinear system with the solve function. Make your results more
readable.

 Define a vector v of the even numbers from 0 to 10. Substitute this vector
into I and II

Q7) Find the 1st derivative of the following expressions:

x2 + x - 1
sin(x)
tan(x)
ln(x)

Q8) Find the 1st and 2nd partial derivatives with respect to x of the following

expressions:
ax2 + bx + c

x0.5 - 3y
tan (x + y)

3x + 4y - 3xy
2y - 3x2

Refined 2nd partial derivative with respect to y

Q9) Integrate the expressions in Q8 and Q9 with respect to x, then integrate the

expressions in Q9 with respect to y

Q10) Perform a double integration with respect to y for each of the expressions

in Q9

Q11) A college student goes to the cafeteria and buys lunch. The next day he

spends twice as much. The third day he spends $1 less than he did the second
day. At the end of 3 days he has spent $35. How much did he spend each day?
Solve this problem.

Mohammed Q. AliMohammed Q. AliMohammed Q. AliMohammed Q. Ali

Chapter		4											Symbolic	Mathematics	and	Calculus	
Q12) Consider the following set of seven equations:

Define a symbolic variable for each of the equations, and use MATLAB to solve
for each unknown. Compare the amount of time it takes to solve the preceding
problem by using symbolic math with the tic and toc functions, whose syntax is:

tic
⋮
code to be timed
⋮
toc

Q13) Determine the 1st and 2nd derivatives of the following functions:

 f1(x) = y = x3 - 4x2 + 3x + 8
 f2(x) = y = (x2 - 2x + 1) (x – 1)
 f3(x) = y = cos(2x) sin(x)
 f4(x) = y = ��C���

Q14) Use MATLAB symbolic functions to perform the following integrations:

D4�� : 60�

D 4�� : �60�
 .�

F.�

D4�� : ��60�

D 4;�� : <� : =60�
�

�.3

Q15) The following polynomial represent the altitude in meters during the first
48 hours following the launch of a weather balloon:

G4B6 � 7F. �B� : �B� 7 �HFB� : � FFB : ��F

Mohammed Q. AliMohammed Q. AliMohammed Q. AliMohammed Q. Ali

Chapter		4											Symbolic	Mathematics	and	Calculus	
Assume that the unit of t is hours.

1) Find the velocity which it’s the 1st derivative of the altitude to determine the
equation for the velocity of the balloon.

2) Find the acceleration is the derivative of velocity, or the 2nd derivative of the
altitude, to determine the equation for the acceleration of the balloon.

3) Determine when the balloon hits the ground. Because h(t) is a fourth-order
polynomial, there will be four answers. However, only one answer will be
physically meaningful.

4) Determine the maximum height reached by the balloon. Use the fact that the
velocity of the balloon is zero at the maximum height.

