3.1 Script M-Files

For simple problems, entering commands at the MATLAB prompt in the Command window is simple and efficient. However, when the number of commands increases, or you want to change the value of one or more variables, reevaluate a number of commands, typing at the MATLAB becomes tedious. You will find that for most uses of MATLAB, you will want to prepare a script, which is a sequence of commands written to a file. Then, by simply typing the script file name at a MATLAB prompt, each command in the script file is executed as if it were entered at the prompt.

Script File: Group of MATLAB commands placed in a text file with a text editor. MATLAB can open and execute the commands exactly as if they were entered at the MATLAB prompt. The term "script" indicates that MATLAB reads from the "script" found in the file. Also called " M-files," as the filenames must end with the extension ' $\cdot \boldsymbol{m}$ ', e.g. example1.m.
M-files are text files and may be created and modified with any text editor. The steps to create a script are:

1) Click on icon on the MATLAB toolbar.
2) Press keys $(\boldsymbol{C t r l}+\boldsymbol{N})$
3) Form (File \rightarrow New \rightarrow Script)

- A new window will activate called the Editor as shown.

- When finished, save the file using File \rightarrow Save or click on $>$ icon. The rules for filenames are the same as for variables (they must start with a letter, after that there can be letters, digits, or the underscore, etc.). By default, scripts will be saved in the Work Directory. If you want to save the file in a different directory, the Current Directory can be changed.

Example 3.1: Write a program (m-file) and named it "Qroots.m" to find the quadratic equation roots:

$$
2 x^{2}-5 x+3=0
$$

Sol:

```
a=2;
b}=-5
c=3;
r1=(-b+sqrt(b^2-4*a*c)) / (2*a)
r2=(-b-sqrt(b^2-4*a*c))/(2*a)
```

To execute the script M-file, simply type the name of the script file Qroots at the MATLAB prompt.

```
>> Qroots
r1 =
    1.5000
r2 =
    1
```


Notes:

- When file is executed, All its variables are displayed in workspace window
- It is useful to use functions such as (clc , clear , format ,...) in script file to improve the results.

Example 3.2: write a program (vector.m) to generate a vector with 12 random elements and find:
a. The largest element and its position.
b. The smallest element and its position.

Sol:

```
clear
```

clc
format bank
$\mathrm{V}=\mathrm{rand}(1,12)$
[Vmax, Pmax] $=\max (V)$
[Vmin Pmin]=min (V)
\gg vector
$\mathrm{V}=$
Columns 1 through 6
0.75
0.26
0.51
0.70
0.89
0.96

Columns 7 through 12

3.2 Input and Output Statements

The script would be much more useful if it were more general; for example, if the value of the radius could be read from an external source rather than being assigned in the script. Also, it would be better to have the script print the output in a nice, informative way. Statements that accomplish these tasks are called input/output statements, or I/O for short. With examples of input and output statements will be shown here from the Command Window, these statements will make the most sense in scripts.

3.2.1 input Function

The simplest input function in MATLAB is called input. The input function is used in an assignment statement. To call it, a string is passed, which is the prompt that will appear on the screen, and whatever the user types will be stored in the variable named on the left of the assignment statement. To make it easier to read the prompt, put a colon $(:)$ and then a space after the prompt. For example:

>> r = input ('Enter the radius: ')

Enter the radius: 7
$r=$
7
If character or string input is desired, ' s ' must be added after the prompt:

```
>> name = input ('Enter your Name: ', 's' )
Enter your Name: Ahmed
name =
Ahmed
```

MATLAB gave an error message and repeated the prompt. However, if the input function is used to enter number but the user instead enters a letter or vice versa

```
>> n = input ('Enter your Age: ')
Enter your Age: k
??? Error using ==> input
Undefined function or variable 'k'.
```

Enter your Age: 21

$\mathrm{n}=$

21
Separate input statements are necessary if more than one input is desired. For example

>> T = input('Enter the temperature: ');

Enter the temperature: 37
>> s = input('Is it "C" or 'F" ?','s');
Is it "C" or "F" ? \mathbf{C}

3.2.2 Output Statements (disp and fiprintf) functions

The simplest output function in MATLAB is disp, which is used to display the result of an expression or a string without assigning any value to the default variable ans. However, disp does not allow formatting. For examples:

```
>> disp ('Hello')
Hello
```

```
>> disp (6^4)
    1296
>> disp([2:8])
>> disp ([1:5 ; 5:5:25])
    1 2 3 3 4 5
    5
```

>> disp(' Col.\{1\} Col.\{2\} Col.\{3\}'), disp(rand(5,3))

Col.\{1\}	Col.\{2\}	Col.\{3\}
0.3181	0.6393	0.5225
0.1192	0.5447	0.9937
0.9398	0.6473	0.2187
0.6456	0.5439	0.1058
0.4795	0.7210	0.1097

Formatted output can be printed to the screen using the fprintf function. For example:
>> fprintf ('The 7 ! value is $\% d \backslash \mathbf{n}$ ', factorial(7))
The 7 ! value is 5040

The fprintf function, first a string (called the format string) is passed, which contains any text to be printed as well as formatting information for the expressions to be printed. In this example, the $\% \mathbf{d}$ is an example of format information. The \%d is sometimes called a placeholder; it specifies where the value of the expression that is after the string is to be printed. The character in the placeholder is called the conversion character, and it specifies the type of value that is being printed. There are others of the simple placeholders:

Placeholder (character)	Description	Example
\%d	Format as a integer	$\begin{array}{\|l} \hline \gg \text { fprintf }\left({ }^{\prime} \% \mathrm{~d}^{\prime}, 4^{\wedge} 5\right) \\ \text { 1024>> } \\ \hline \end{array}$
\%f	Format as a floating point value	$\begin{aligned} & \text { >> fprintf (} \% \text { f } f^{\prime}, \text { sqrt(90.25)) } \\ & \text { 9.500000>> } \end{aligned}$
\%g	Format as the most compact form (no trailing zero)	$\begin{array}{\|l} \hline \gg \text { fprintf }\left(' \% \mathrm{~g}^{\prime}, \operatorname{sqrt}(\mathbf{9 0 . 2 5})\right) \\ \text { 9.5>> } \end{array}$
\%e	Format as a floating point value in scientific notation	$\begin{array}{\|l\|} \hline \text { l> fprintf (} \quad \% \mathrm{e}^{\prime}, \text { pi) } \\ \text { 3.141593e+000>> } \\ \hline \end{array}$
\%s	Format as a string	$\begin{array}{\|l} \hline \gg \text { fprintf }\left({ }^{\prime} \% s^{\prime}, ~ ' 3 * 8 / 2 '\right) \\ 3 * 8 / 2 \gg \end{array}$
\n	Insert a new line in the output string	>> fprintf ('Welcome! \n this is MATLAB') Welcome! this is MATLAB>>
\t	Insert a $t a b$ in the output string	>> fprintf ('Welcome! \t this is MATLAB') Welcome! this is MATLAB>>

Notes:

- It's important adding the character \ln at the end of output string in order to avoid the prompt (>>) from stick to the result as shown before.
- The character $\backslash n$ can also use in input function, for example:
>>h = input ('Enter \ln The shape height :')
Enter
The shape height :
- The character $\backslash \mathrm{n}$ in form ' $\mathrm{In} \backslash \mathrm{n}$ ' use to get blank line in output, for example:

>> fprintf ('Hello $\backslash n \backslash n$ This is MATLAB $\backslash n '$ ')
 Hello

This is MATLAB

- A field width can also be included in the placeholder in fprintf, which specifies how many characters total are to be used in printing. For example, $\% 5 d$ would indicate a field width of 5 for printing an integer and $\% 10$ s would indicate a field width of 10 for a string. For floats, the number of decimal
places can also be specified; for example, $\% 6.2 f$ means a field width of 6 (including the decimal point and the decimal places) with two decimal places. For floats, just the number of decimal places can also be specified; for example, $\% .3 f$ indicates three decimal places.
>> fprintf ('The integer is $\% 3 \mathrm{~d}$ and the float is $\% 6.2 \mathrm{f} \backslash \mathrm{n} ', 56,42.95897$)
The integer is 56 and the float is 42.96
- For a vector, if a conversion character (\%d, \%f ...) and the \ln character are in the format string, it will print in a column regardless of whether the vector itself is a row vector or a column vector. For examples:

```
>> v=1:5;
```

>>fprintf (' \% d', v), fprintf ('ln')

12345

```
>> fprintf('%d\n', v)
```

1
2
3
4
5

- For matrices, Specifying one conversion character and then the $\backslash n$ character will print the elements from the matrix in one column. The first values printed are from the first column, then the second column, and so on. For examples:

```
>> mat=[1 2 3;4 0 6;7 9 8]
```

mat $=$

1	2	3
4	0	6
7	9	8

>>fprintf (' \%d $1 \backslash n^{\prime}$, mat)

1

4
7
2
0
9
3
6
8

To reshape the matrix to $(\mathbf{3} \mathbf{x} \mathbf{3})$, three of $\% \mathrm{~d}$ characters are specified, the fprintf will print three numbers across on each line of output and so on.

```
>> fprintf (' %dl %d %dl \n', mat)
147
2 0 9
3 6 8
```

Example 3.3: write a program to find the cosine of angles $(0,15,45,60,75,90)$ and format the output result as : "The cosine of angle \mathbf{X} is : Y ", named file "AngleCosine"

```
Sol
clc
clear
theta=0:15:90;
cosine=cosd(theta);
result= [theta ; cosine]; %| |rge the vectars tu produceamatrix
fprintf('The cosine of angle %d is :%4.3f \n',result)
```

```
>> AngleCosine
```

The cosine of angle 0 is :1.000
The cosine of angle 15 is : 0.966
The cosine of angle 30 is : 0.866
The cosine of angle 45 is :0.707
The cosine of angle 60 is : 0.500
The cosine of angle 75 is : 0.259
The cosine of angle 90 is :-0.000

Example 3.4: How many years (\mathbf{Y}) needs to be a millionaire ($\mathbf{F v}$) when you investment an amount of (\mathbf{N})\$ with annual interest rate (\mathbf{R})\%, write a program based on equation: (using I/O statements and named file "investment")

$$
F v=N(1+R)^{Y}
$$

Sol :

1) Redefine the equation in terms of \mathbf{Y}

$$
Y=\frac{\ln \frac{F v}{N}}{\ln (1+R)}
$$

2) Write \& run a program
```
clear
clc
N=input('The amount of Investment :');
R=input('The interest rate{%} :');
Fv=1000000;
Y=log(Fv/N)/log(1+R);
fprintf('\n The No. of years are :\t %0.2f \n',Y)
fprintf('\n Which is approximately :\t %d years \n',ceil(Y))
```


>> investment

The amount of Investment :80000
The interest rate $\{\%\}$:0.12
The No. of years are : $\quad \mathbf{2 2 . 2 9}$
Which is approximately : 23 years

3.3 Relational and logical Operators

In MATLAB the result of a logical operation is $\mathbf{1}$ if it is true and $\mathbf{0}$ if it is false. The relational operators ($\langle,\langle=\rangle,\rangle=,,==$ and $\sim=$) can be used to compare two matrices of the same size or a vector with scalar. For examples:

Relational Operator	Description
$<$	Less than
$>$	Greater than
$<=$	Less than or equal to
$>=$	Greater than or equal to
$==$	Equal to
$\sim=$	Not equal to

```
>> \(3>8\)
ans \(=\)
    0
>> \(x=4<=7\)
\(\mathrm{x}=\)
    1
    \(\gg y=(5>4)+(2<7)+(4 * 3==36 / 3)\)
y =
    3
```


$\gg \mathrm{C}=\mathrm{A}>=\mathrm{B}$
$\mathrm{C}=$
$\begin{array}{lllll}0 & 1 & 1 & 1 & 0\end{array}$
>> $\mathbf{D}=\mathrm{B} \sim=\mathbf{C}$
D
$\begin{array}{lllll}1 & 1 & 1 & 0 & 1\end{array}$
>> $\mathrm{E}=\mathrm{B}-\mathrm{A}>0$

```
\(\mathrm{E}=\)
    \(\begin{array}{lllll}1 & 0 & 0 & 0 & 1\end{array}\)
>> M = [9 5 1 1 0; 3 6-5 7; 8 10-6-4 -4]
\(\mathrm{M}=\)
            \(\begin{array}{rrrr}9 & 5 & 1 & 0 \\ 3 & 6 & -5 & 7 \\ 8 & 10 & -6 & -4\end{array}\)
>> \(\mathrm{H}=\mathrm{M}<5\)
H =
\begin{tabular}{llll}
0 & 0 & 1 & 1 \\
1 & 0 & 1 & 0 \\
0 & 0 & 1 & 1
\end{tabular}
```


Notes:

- The vector with values of $\mathbf{0 s}$ and $\boldsymbol{1} \boldsymbol{s}$ which is the result of relational operation are called logical vector. The real power of logical vectors is that they can be used as on-off subscripts in vector expressions. Suppose that the problem is not just to find out how many negative numbers are in the vector, but to extract them for future use:

```
\(\gg v=\left[\begin{array}{lllllllll}-2 & 3 & 4 & -1 & -6 & 2 & 8 & 9 & -7 \\ \hline\end{array} \mathbf{0}-5\right]\)
\(\mathrm{v}=\)
    \(\begin{array}{lllllllllll}-2 & 3 & 4 & -1 & -6 & 2 & 8 & 9 & -7 & 0 & -5\end{array}\)
\(\gg \mathrm{Vn}=\mathrm{v}<\mathbf{0}\)
\(\mathrm{Vn}=\)
    \(1 \begin{array}{lllllllllll}1 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 1 & 0 & 1\end{array}\)
>> Vneg \(=\mathbf{v}(\) Vn \()\)
Vneg =
    \(\begin{array}{lllll}-2 & -1 & -6 & -7 & -5\end{array}\)
>> Vneg=v(v<0)
Vneg =
    \(\begin{array}{lllll}-2 & -1 & -6 & -7 & -5\end{array}\)
```

- The order of precedence in mathematical expression, the arithmetic operators $(+,-, *, /, \backslash, \wedge)$ is higher than relational operators, whereas the relational operators have the equal precedence and are evaluated from left to right, parenthesis used to overcome the precedence. For examples:

```
\(\gg \mathbf{6 + 1}<=\mathbf{1 8 / 3}\) \% the / and + executes first and then relational operator <<
```

```
ans =
    0
>> 6+ (1<=18)/3 % the parenthesis executes first
ans =
    6 . 3 3 3 3
```

- The relational operators can also uses with characters based on ASCII code. For examples:
>> 'n' > 'z'
ans $=$
0
>> 'n' > 'Z'
ans =
1
>> 'Not' >= 'not'
ans $=$
$0 \quad 1 \quad 1$
>> 'MatLab' < 'matlab'
ans =
10000100
The logical operators ($\boldsymbol{\&}, \mid$ and \sim) allow for the logical combination or negation of relational operators. For examples:

Logical operator	Name	Description	
$\boldsymbol{\&}$	AND	Compares between two operands(A,B) if both are true, the result is true(1) ;otherwise its false(0)	
$\\|$	OR	Compares between two operands(A,B) if either one or both are true, the result is true(1) ;otherwise its false(0)	
\sim	NOT	Checks one operand (A), if it is true (1), the result is false(0), or vice versa.	

```
>> 8&-1
ans =
    1
>> 9|0
ans =
    1
```

```
>> ~12
ans =
    0
>> R=10*((1&-2)-(0|3)+(~0)) % using logical aperatars in math expression
R=
    10
    >> X=[9 5-4 0 6]; Y=[1 0 7-3 11];
>> Z=X&Y
Z=
    1 0
    >> Z=0|Y
                                    % compares scalar \ with Y elements using logical \R
Z=
    1 0
    >> W= ~(X .* Y)
W =
    0
```


Notes:

- The order of precedence for logical operator NOT is higher than both arithmetic and relational operations, whereas the logical AND and OR are equal and lower than both arithmetic and relational operations, if two or more operators have the same precedence is executed from left to right. For examples:

```
    >> \(x=-1 ; y=4 ;\)
    >> - \(2<x<0\)
ans =
    0
    >>-2<x\& \(\mathbf{x}<\mathbf{0}\) \% exentes < aperatars first, then compare thair results with AND operatar
ans =
    1
>>~ \(\sim(\mathbf{y}>=\mathbf{1}) \quad \%\) executes parenthesis first, then logical NDT
ans =
    0
    >> \(\boldsymbol{\sim} \mathbf{y}<=\mathbf{1} \quad \%\) executes logical NDT first, then chicks result with \(<=\)
ans =
    1
```

```
\(\gg \sim((x<-2) \mid(y>=4))\)
ans =
    0
\(\quad \gg \sim(\mathbf{x}<-\mathbf{2}) \mid(\mathbf{y}>=\mathbf{4}) \quad\) \% executes parentheses first, then uses lagical NDT and finally
ans \(=\)
\(\quad 1\)
```

- MATLAB provides additional built-in logical functions:

Function	Description	Example
all(A)	Determine whether all array elements are nonzero or true	```>> X=[3 4 1]; Y=[80 7 5]; >> all(X), all(Y) ans = 1 ans = 0```
any (A)	Determine whether any array elements are nonzero	$\begin{aligned} & \text { >> } \mathrm{X}=\left[\begin{array}{ll} 0 & 0 \end{array}\right] ; \mathrm{Y}=\left[\begin{array}{ll} 6 & 0 \end{array}\right] ; \\ & \text { >> any }(X), \text { any }(\mathrm{Y}) \\ & \text { ans }= \\ & \quad 0 \\ & \text { ans }= \\ & \quad 1 \end{aligned}$
Find(A)	Find indices and values of nonzero elements	
Find(A>K)	Find indices of elements that returns true of relational operators	$\begin{aligned} & \text { >> } X=\left[\begin{array}{llllll} 0 & 9 & 1 & 0 & 3 & 0 \end{array}\right) \\ & \text { > } 7 \text {; find }(X>5) \\ & \text { ans }= \\ & \quad 2 \quad 8 \end{aligned}$

Example 3.5: Write a program to test the degrees of 40 students and find: (named file "students")

1) The number of students those degrees above $\mathbf{8 0}$
2) The number of students those degrees between $\mathbf{6 0}$ and $\mathbf{7 9}$
3) The number of students those failed and their degrees
```
Sol:
clear
Clc
Degree= randi([25,100],1,40)
DegreeAbove80=sum(Degree>80) ;
Degree60to79=sum(Degree>=60 & Degree<80);
Failures=sum(Degree<50) ; % find na. पf failures students
fprintf('\n')
disp('------------------------------------------------------}
fprintf("The no. of students with degree above 80 :
%d\n', DegreeAbove80)
```

```
fprintf('The no. of students with degrees 60 to 79 :
%d\n',Degree60to79)
fprintf('The no. of failures students: %d\n',Failures)
fprintf('And their degrees are :\n')
disp(Degree(Degree<50))
>> students
Degree =
    Columns 1 through 15
    61
    Columns }16\mathrm{ through }3
    92
    Columns 31 through 40
    71
```

The no. of students with degree above $80: \mathbf{1 0}$
The no. of students with degrees 60 to $79: 14$
The no. of failures students: 14
And their degrees are :
$\begin{array}{llllllllllllll}42 & 43 & 31 & 26 & 34 & 40 & 27 & 28 & 39 & 34 & 40 & 36 & 39 & 28\end{array}$

3.4 Flow Control

Selection statements that test the results of relational or logical functions or operators are the decision-making structures that allow the flow of command execution to be controlled.

MATLAB has two basic statements that allow choices: the if statement and the switch statement. The if statement has optional else and elseif clauses for branching. The if statement uses expressions that are logically true or false.

There are two different loop statements in MATLAB: the for statement and the while statement. In practice, the for statement usually is used as the counted loop, and the while is used as the conditional loop.

3.4.1 The $\{i f$ - elseif-else - end\} statement

An if statement can be followed by an (or more) optional elseif... and an else statement, which is very useful to test various condition. When using if... elseif...else statements, there are few points to be considered:

- The if - end uses with one condition, the if - else - end uses with two conditions and for more than two uses if - elseif - else - end.
- An if can have zero or one else and it must come after any elseif.
- An if can have zero to many elseif and they must come before the else.
- The nested if statements can use one if or elseif statement inside another if or elseif statement(s). The syntax of if statement in MATLAB is:

if <expression 1>
 Executes when the expression 1 is true
 elseif <expression 2>

\% Executes when the boolean expression 2 is true

Elseif <expression 3>

\% Executes when the br slean ex ession 3 is true
else
\% Executes when the n
end
Example 3.6 Write a script file to prompt the user to enter an integer, and then display whether the integer is zero, positive or negative.(named file "testNumber")

```
Sol:
n=input('Enter an integer : ');
if n>0
    disp('The number is Positive')
elseif n<0
    disp('The number is Negative')
else
    disp('The number is Zero')
end
```


>>testNumber

Enter an integer: 9
The number is Positive

>>testNumber

Enter an integer: $\mathbf{0}$
The number is Zero
Example 3.7 Grades are to be assigned as follows:
A $\mathbf{8 0 \%}$ - 100\%
B $\mathbf{6 5 \%}-\mathbf{7 9 \%}$
C 50\% - 64\%.
Write a script file to prompt the user to input a mark and display the appropriate grade. If the user enters a number greater than $\mathbf{1 0 0}$ or less than zero, display a message that the mark is invalid.(file name "testMark"

```
Sol:
mark=input ('Enter the mark : ');
if mark > 100 | mark < 0
```

```
    disp('Invalid mark')
elseif mark >= 80
    disp('A')
elseif mark >= 65
    disp('B')
elseif mark >= 50
    disp('C')
else
    disp('Fail')
end
```


>> testMark

Enter the mark : 58
C

>> testMark

Enter the mark: 91
A
>> testMark
Enter the mark : 102
Invalid mark
Example 3.8: write a program to find the Y value when: (named file "Yvalue")

$$
Y=\left\{\begin{array}{crl}
\frac{2}{x^{3}} & -10 \leq x & <0 \\
2 & x & =0 \\
\sqrt[3]{x^{2}+4} & 0 & <x \leq 7
\end{array}\right.
$$

Sol:

```
x=input('Enter the x value : ');
if }x<-10 | x>7
    disp('Undefined the Y value')
elseif x>=-10 & x<0
    Y=2/x^3;
    fprintf('The Y value = %0.3f\n ',Y);
elseif x>0 & x<=7
    Y=nthroot(sqrt(x^2+4),3);
    fprintf('The Y value = %0.3f\n ',Y);
else
    fprintf('The Y value = %d\n ',2);
end
```


>> Yvalue

Enter the x value : 9
Undefined the Y value

>> Yvalue

Enter the x value : $\mathbf{0}$
The Y value $=2$

>> Yvalue

Enter the x value : $\mathbf{- 5}$
The Y value $=-0.016$

>> Yvalue

Enter the x value: $\mathbf{1}$
The Y value $=1.308$

3.4.2 The \{switch\} statement

A switch block conditionally executes one set of statements from several choices. Each choice is covered by a case statement. The switch block tests each case until one of the cases is true.

When a case is true, MATLAB executes the corresponding statements and then exits the switch block. The otherwise block is optional and executes only when no case is true. The syntax of switch statement in MATLAB is:

```
switch <switch_expression>
case <case_expression>
case <case_expression>
```


otherwise

end
Example 3.9: Write a program to select a color by entering the $1^{\text {st }}$ letter of its name: And handle the invalid letter (named with "colortest")

\mathbf{G}	Green
\mathbf{Y}	Yellow
\mathbf{W}	White
\mathbf{R}	Red
\mathbf{B}	Blue
\mathbf{C}	Cyan

Sol:

```
color=input('Enter color letter : ','s');
switch color
    case {'G','g'}
        disp('The color is Green');
    case {'Y','Y'}
        disp('The color is Yellow');
    case {'R','r'}
```

```
        disp('The color is Red');
case {'W','w'}
    disp('The color is White');
case {'B','b'}
    disp('The color is Blue');
case {'C','c'}
    disp('The color is Cyan');
    otherwise
    disp('Undefined Color');
```

end

>> colortest

Enter color letter : y
The color is Yellow

>> colortest

Enter color letter : b
The color is Blue

>> colortest

Enter color letter: R
The color is Red
Example 3.10: Write a program to display the name of day by giving the day number as the following:

1	Saturday
2	Sunday
3	Monday
4	Tuesday
5	Wednesday
6	Thursday
7	Friday

And handle the invalid number (named file "dayname")

Sol:

```
Nday=input('Enter The Day Number : ');
switch Nday
    case 1
        disp('The day is SATURDAY');
    case 2
        disp('The day is SUNDAY');
    case 3
        disp('The day is MONDAY');
    case 4
        disp('The day is TUESDAY');
    case 5
        disp('The day is WEDNESDAY');
```

```
    case 6
        disp('The day is THURSDAY');
    case 7
        disp('The day is FRIDAY');
    otherwise
        disp('Invalid');
end
>> dayname
Enter The Day Number : \(\mathbf{3}\)
The day is MONDAY
>> dayname
Enter The Day Number : 7
The day is FRIDAY
```


>> dayname

```
Enter The Day Number : 10
Invalid
```


3.4.3 The \{for loop\} statement

A for loop is a repetition control structure that allows you to efficiently write a loop that needs to execute a specific number of times. The syntax of for statement in MATLAB is:
for index = initval : step : endval

end

Increments index by the value step on each iteration, or decrements when step is negative, step is omitted when increment is $\mathbf{1}$. For examples:

```
>> for N=10:20
fprintf ('value of N:%d\n', N);
end
value of N: 10
value of N: 11
value of N: 12
value of N: 13
value of N: 14
value of N: 15
value of N: 16
value of N: 17
value of N: 18
value of N: 19
value of N: 20
```

```
>> for A = [24,18,17,23,28]
disp(A)
end
```

 24
 18
 17
23
28

Example 3.11: Create a script file to find $\sum_{x=1}^{x=n} \sqrt{x}$

```
Sol:
N=input('Enter N value : ');
xsum=0;
for x=1:N
    xsum=xsum+sqrt(x);
end
disp(xsum)
```

Enter N value : $\mathbf{7}$
13.4776

Note: MATLAB allows to use more than one for loop, each one inside another loop. The syntax for a nested for loop statement in MATLAB is:

```
for m=1:j
    for n=1:k
```

 <statements>;
 end
 end

Example 3.12: Create a script file to generate ($\mathbf{N} \mathbf{X} \mathbf{N}$) matrix in form like:

```
Sol:
clear
N=input('Enter the square matrix size : ');
for \(\mathrm{i}=1: \mathrm{N}\)
        for \(\mathrm{j}=1: \mathrm{N}\)
            if \(\bmod (i+j, 2)==0\)
                a \((i, j)=1\);
            else
                \(a(i, j)=0\);
            end
    end
end
disp(a)
```

 \(\left[\begin{array}{lllll}\mathbf{1} & 0 & \mathbf{1} & 0 & \mathbf{1} \\ 0 & \mathbf{1} & 0 & \mathbf{1} & 0 \\ \mathbf{1} & 0 & \mathbf{1} & 0 & \mathbf{1} \\ 0 & \mathbf{1} & 0 & \mathbf{1} & 0 \\ \mathbf{1} & 0 & \mathbf{1} & 0 & \mathbf{1}\end{array}\right]\)
 Enter the square matrix size : $\mathbf{5}$

1	0	1	0	1
0	1	0	1	0
1	0	1	0	1
0	1	0	1	0
1	0	1	0	1

Example 3.13: Given two vectors \mathbf{x} and \mathbf{y} with random values, create a matrix \mathbf{A} whose elements are defined as $\boldsymbol{A}_{i j}=\boldsymbol{x}_{i} . \boldsymbol{y}_{\boldsymbol{j}}$. Write a script file.

Sol:

```
clear;clc
x=randi([1,10],1,7); % generates row vecton (7)
y=randi([1,4],5,1); % generates columm tctor y(5)
for i=1:length(x)
    for j=1:length(y)
        A(i,j)=x(i)*y(j);
        end
end
disp(A)
```


3.4.4 The \{while loop\} statement

The while loop repeatedly executes statements while condition is true. The syntax of a while loop in MATLAB is:

while <expression>

<statement(s)>

End

The while loop repeatedly executes program statement(s) as long as the expression remains true.

Example 3.14: Write a program to compute the series:

$$
y=1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{n} \quad n \neq 0
$$

Sol:

```
clc;clear
N=input('Enter N value : ');
Y=0;i=1;
while i<=N
        Y=Y+1/i;
        i=i+1;
end
fprintf('Y= %.3f\n',Y)
```

Enter N value : $\mathbf{8}$
$\mathrm{Y}=2.718$
Example 3.15: Write a program to generate the series (1, 2, 4, 8, ... , 1024) and display it as a vector

Sol:

```
clear;clc;
n=0;i=1;
while 2^n<=1024
    A(i) = 2^n;
    n=n+1;
    i=i+1;
end
disp(A')
```

 1
 2
 4
 8
 16
 32
 64
 128
 256
 512
 1024
 Note: Also likes for loop, more than one while loop are used, one loop inside the another loop. The syntax for a nested while loop statement in MATLAB is as follows:

```
while <expression1>
    while <expression2>
    end
end
```


Example 3.16: Write a program to display the multiplication table

```
Sol:
clc;clear;
x=1;
while x<=10
    y=1;
    while y<=10
        z (x,y)=x*y;
        y=y+1;
    end
    x=x+1;
end
```

disp (z);									
1	2	3	4	5	6	7	8	9	10
2	4	6	8	10	12	14	16	18	20
3	6	9	12	15	18	21	24	27	30
4	8	12	16	20	24	28	32	36	40
5	10	15	20	25	30	35	40	45	50
6	12	18	24	30	36	42	48	54	60
7	14	21	28	35	42	49	56	63	70
8	16	24	32	40	48	56	64	72	80
9	18	27	36	45	54	63	72	81	90
10	20	30	40	50	60	70	80	90	100

3.4.5 The \{break\} statement

The break statement terminates execution of for or while loop. Statements in the loop that appear after the break statement are not executed. In nested loops, break exits only from the loop in which it occurs. Control passes to the statement following the end of that loop.
Example 3.17 Write a program to generate 100 random numbers range (1-50) use rand function, stop the operation when number $=\mathbf{3 3}$. Display the numbers until it stopped

Sol:

```
clc;clear
counter=0;
for i=1:100
    x=((50-1)*rand+1); % generate value range between(l-50)
    disp(x)
    counter=counter+1;
    if fix(x)==33 % the stap canr an(canvert ta integer)
        fprintf('The no. of generated elements = %d\n
',counter)
        break;
        end
end
    20.6923
    31.9646
    49.2766
    28.4144
    46.7460
    36.2968
    24.7179
    32.3125
    44.4942
    10.7381
    20.3729
    49.6166
    20.7152
    33.2840
```

The no. of generated elements $=\mathbf{1 4}$

3.4.6 The \{continue\} statement

The continue statement is used for passing control to next iteration of for or while loop. The continue statement in MATLAB works somewhat like the break statement. Instead of forcing termination, however, 'continue' forces the next iteration of the loop to take place, skipping any code in between.
Example 3.18: Write a program to generate 10 integer x values range $(0-3)$ and compute $\boldsymbol{y}=\frac{\mathbf{1}}{\boldsymbol{x}}(\boldsymbol{x} \neq \mathbf{0})$, pass by when $\mathrm{x}=0$. Find how many passes and display the y values.

Sol:

```
clear;clc
counter=0;
i=1;
while i<=10
    x=randi([0,3]);
    y(i)=1/x;
    if (x==0)
        i=i+1;
        counter=counter+1;
        continue;
    end
i=i+1;
end
disp(y')
fprintf('the no. of passes : %d\n',counter)
    0.50
    0 . 3 3
    0.50
    0.33
    Inf
    Inf
    0.33
    1.00
    Inf
```

the no. of passes : 3

3.5 User Defined Functions

A function is a group of statements that together perform a task. In MATLAB, functions are defined in separate files. The name of the file and of the function should be the same.

Functions operate on variables within their own workspace, which is also called the local workspace, separate from the workspace you access at the MATLAB command prompt which is called the base workspace. Functions can accept more than one input arguments and may return more than one output arguments. Syntax of a function statement is:

$$
\text { function }[\text { out1, out } 2, \ldots, \text { outN] }=\text { myfun }(i n 1, \text { in } 2, \text { in } 3, \ldots, \text { inN })
$$

Example 3.19: Create a function file, named Nmax should be written in a file named Nmax.m. It takes three numbers as argument and returns the maximum of the numbers.

Sol

```
function max=Nmax (a,b,c)
```

Comment describing the function

```
% This function calculates the maximum of the
% three given numbers as input
if (a>b) & (a>c)
    max=a;
elseif (b>c)
    max=b;
else
        max=c;
end
end
```

>> $\mathbf{x}=\operatorname{Nmax}(\mathbf{1 2 , 3 5 , 1})$
X =
35
>> $\mathrm{x}=\mathrm{Nmax}(12,-35,1)$
$\mathrm{x}=$
12
>> $\mathrm{x}=\operatorname{Nmax}(-12,-35,1)$
$\mathrm{x}=$
1

Note: The comment lines that come right after the function statement provide the help text. These lines are printed when type:

>> help Nmax

This function calculates the maximum of the
three given numbers as input
Example 3.20: Create a function to sort a matrix column by column ascending

Sol:

```
function B= sortBycol(array)
[m,n]=size(array);
V=reshape(array,1,m*n);
V=sort(V);
B=reshape (V,m,n);
End
>> A=[9 5 1 0;76 3 4;2 10 12 11]
A =
\begin{tabular}{rrrr}
9 & 5 & 1 & 0 \\
7 & 6 & 3 & 4 \\
2 & 10 & 12 & 11
\end{tabular}
```

```
>> sortBycol(A)
ans =
\begin{tabular}{llll}
0 & 3 & 6 & 10 \\
1 & 4 & 7 & 11
\end{tabular}
```


3.6 Anоиутоиs Functions

An anonymous function is a very simple, one-line function. The advantage of an anonymous function is that it does not have to be stored in an M-file, it can be created in the Command Window or in any script. The syntax for an anonymous function is:

fnhandle = © (arguments) functionbody

Where fnhandle stores the function handle; it is essentially a way of referring to the function. The handle is assigned to this name using the @ operator. The arguments, in parentheses, correspond to the argument(s) that are passed to the function. For examples:
>> power = @ (x,n) x.^n;
>> power $(2,5)$
ans $=$
32
$\gg \mathrm{V}=\left[\begin{array}{llll}2 & 3 & 6 & 1\end{array}\right]$;
>> power ($\mathrm{V}, 5$)

```
ans =
\(32 \quad 243 \quad 7776\)

Example 3.21: Use an anonymous function to define:
1) ln
2) \(\mathrm{F}^{\circ}\) to \(\mathrm{C}^{\circ}\) temperature
3) Area of circle

\section*{Sol:}
>> \(\ln =@(x) \log (x)\);
\(\gg \ln (500), \log (500)\)
ans =
6.2146
ans \(=\)
6.2146
```

>> FtoC=@(f) (f-32)/1.8;
>> FtoC(110)
ans =
4 3 . 3 3 3 3
>> FtoC(0)
ans =
-17.7778
>> circlarea = @ (radius) pi * radius .^2; % defines function area = \pir'2
>> circlarea (8)
ans =
201.0619
>> circlarea ([5 9 3 3 6])
ans =
78.5398 254.4690 28.2743 113.0973

```

Notes: Function handles can also be created for functions other than anonymous functions, both built-in and user defined functions. For example, the following would create a function handle for the built-in factorial function:
```

>> Fact = @factorial;
>> Fact(8)
ans =
4 0 3 2 0

```

\subsection*{3.7 Primary and Sub-Functions}

Any function other than an anonymous function must be defined within a file. Each function file contains a required primary function that appears first and any number of optional sub-functions that comes after the primary function and used by it. Primary functions can be called from outside of the file that defines them, either from command line or from other functions, but sub-functions cannot be called from command line or other functions, outside the function file. Subfunctions are visible only to the primary function and other sub-functions within the function file that defines them.

Example 3.22 Write a function named quadratic that would calculate the roots of a quadratic equation. The function file quadratic.m will contain the primary function quadratic and the sub-function disc, which calculates the discriminant.
```

Sol:
Function [x1,x2]= quadratic(a,b,c)
%this function returns the roots of a quadratic equation.
%It takes 3 input arguments which are:
%the co-efficients of x2, x and the constant

```
```

d = disc(a,b,c);
x1 = (-b + d)/(2*a);
x2 = (-b - d)/(2*a);
end
% end of quadratic(primary function)
function dis = disc(a,b,c) % function calculates the discriminant
dis = sqrt(b^2-4*a*c);
end

```
    >> [r1,r2] = quadratic \((-3,6,1)\)
r1 =
    -0.1547
r2 =
    2.1547

\section*{Exercises}

Q1) Write an anonymous function to calculate and return the Volume of:
- Cube
- Cylinder
- Sphere
- Pyramid

Q2) Write an anonymous function to implement this. Compare yours to the built-in function sinh.

Hyperbolic sine \((x)=\left(e^{x}-e^{-x}\right) / 2\)
Q3) Write a function areaperim that will calculate both the area and perimeter of a polygon. For a polygon with \(n\) sides inscribed in a circle with a radius of \(r\), the area \(A\) and perimeter \(P\) of the polygon can be found by:
\[
A=\frac{1}{2} n r^{2} \sin \left(\frac{\pi}{n}\right) \quad P=2 n r \sin \left(\frac{\pi}{n}\right)
\]

Q4) The Fibonacci numbers is a sequence of numbers Fi: 0112358 ... Where
a. \(F_{0}=0\)
b. \(F_{1}=1\)
c. \(F_{n}=F_{n-2}+F_{n-1}\) if \(n>1\)

Write a function to implement this definition. The function will receive one integer argument \(\mathbf{n}\), and it will return one integer value, which is the nth Fibonacci number.

Q5) Write a function conevol to calculate the cone volume which is given by:
\[
V=\frac{1}{3} \pi r^{2} h
\]

Where \(\boldsymbol{r}\) is the radius of the circular base and \(\boldsymbol{h}\) is the height of the cone
Q6) A closed cylinder is being constructed of a material that costs a dollar amount per square foot. Write a function that will calculate and return the cost of the material, rounded up to the nearest square foot. The total surface area for the closed cylinder is:
\[
S A=2 \pi r^{2}+2 \pi r h
\]

Where \(\boldsymbol{r}\) is the radius and \(\boldsymbol{h}\) is the height of the cylinder
Q7) Write a simple script that will calculate the volume of a hollow sphere that is
\[
\frac{4 \pi}{3}\left(r_{0}^{3}-r_{1}^{3}\right)
\]

Where \(\boldsymbol{r}_{1}\) is the inner radius and \(\boldsymbol{r}_{0}\) is the outer radius. Assign a value to a variable for the inner radius, and also assign a value to another variable for the outer radius. Then, using these variables, assign the volume to a third variable.
Q8) Write a function nexthour that will receive one integer argument, which is an hour of the day, and will return the next hour. This assumes a 12 -hour clock, so for example the next hour after \(\mathbf{1 2}\) would be \(\mathbf{1}\). Here are two examples of calling this function.

\section*{>> fprintf('The next hour will be \%d.\n',nexthour(3))}

The next hour will be 4 .
>> fprintf('The next hour will be \%d.\n',nexthour(12))
The next hour will be 1 .
Q9) Write a script to calculate the volume of a pyramid, which is ( \(1 / 3\) * base * height), where the base is (length * width). Prompt the user to enter values for the length, width, and the height and then calculate the volume of the pyramid. When the user enters each value, he or she will then be prompted also for either \(\mathbf{i}\) for inches, or \(\mathbf{c}\) for centimeters. (Note: \(2.54 \mathrm{~cm}=1\) inch). The script should print the volume in cubic inches with three decimal places. As an example, the format will be:
```

This program will calculate the volume of a pyramid.
Enter the length of the base: 50
Is that i or c?
Enter the width of the base: 6
Is that i or c? c
Enter the height:
Is that i or c? i
The volume of the pyramid is xxx.xxx cubic inches.

```

Q10) Write a function createvec_m_to_n that will create and return a vector of integers from \(\mathbf{m}\) to \(\mathbf{n}\) (where \(\mathbf{m}\) is the first input argument and \(\mathbf{n}\) is the second), regardless of whether \(\mathbf{m}\) is less than \(\mathbf{n}\) or greater than \(\mathbf{n}\). If \(\mathbf{m}\) is equal to \(\mathbf{n}\), the vector will just be \(\mathbf{1} \times \mathbf{1}\) or a scalar. Here are some examples of calling the function:
```

>> createvec_m_to_n (8,5)
ans =
5 6 7 8
>> createvec_m_to_n (6,6)
ans =
6
>> result = createvec_m_to_n(4,5)
result =
4 5
>> help createvec_m_to_n
Creates a vector of integers from m to n

```

Q11)Write a script that will generate one random integer, and will print whether the random integer is an even or an odd number.

Q12) A Pythagorean triple is a set of positive integers \((\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c})\) such that \(\boldsymbol{a}^{2}+\boldsymbol{b}^{2}\) \(=\boldsymbol{c}^{2}\). Write a function ispythag that will receive three positive integers \((a, b\), \(c\) in that order) and will return \(\mathbf{1}\) for true if they form a Pythagorean triple, or \(\mathbf{0}\) for false if not.

Q13) Write a script area_menu that will print a list consisting of cylinder, circle, and rectangle. It prompts the user to choose one, and then prompts the user for the appropriate quantities (e.g., the radius of the circle) and then prints its area. If the user enters an invalid choice, the script simply prints an error message. The script use switch statement to accomplish this. Here are two examples of running it (units are assumed to be inches).
```

>> area_menu
Menu

1. Cylinder
2. Circle
3. Rectangle
Please choose one: 2
Enter the radius of the circle: 4.1
The area is 52.81
>> area_menu
Menu
4. Cylinder
5. Circle
6. Rectangle
Please choose one
Enter the length: 4
Enter the width: 6
The area is 24.00
```

Q14) Let \(x=\left[\begin{array}{ll}316912-10-12961] . ~ P r o v i d e ~ t h e ~ c o m m a n d(s) ~ t h a t ~ w i l l: ~\end{array}\right.\)
- set the positive values of \(\mathbf{x}\) to zero
- set values that are multiples of \(\mathbf{3}\) to \(\mathbf{3}\)
- multiply the even values of \(\mathbf{x}\) by 5
- extract the values of \(\mathbf{x}\) that are greater than \(\mathbf{1 0}\) into a vector called \(\mathbf{y}\)
- extract the values of \(\mathbf{x}\) that are less than \(\mathbf{0}\) into a vector called \(\mathbf{z}\)

Q15) Let \(\mathbf{A}=\mathbf{r a n d i}([-10,10], 6,6)\). Perform the following (using find function):
- find the indices and list all elements of \(\mathbf{A}\) which are smaller than -3
- find the indices and list all elements of \(\mathbf{A}\) which are smaller than \(\mathbf{5}\) and larger than \(\mathbf{- 1}\)
- remove those columns of \(\mathbf{A}\) which contain at least one \(\mathbf{0}\) element.

Q16) Assume that the months are represented by numbers from 1 to \(\mathbf{1 2}\). Write a script that asks you to provide a month and returns the number of days in that particular month. Alternatively, write a script that asks you to provide a month name (e.g. 'June') instead of a number. Use the switch function.

Q17) Write a for loop that will print the column of real numbers from 1.1 to 2.9 in steps of 0.1.

Q18) Write a function sumsteps2 that calculates and returns the sum of \(\mathbf{1}\) to \(\mathbf{n}\) in steps of \(\mathbf{2}\), where \(\mathbf{n}\) is an argument passed to the function. Do this using a for loop

Q19) Write a function prodby2 that will receive a value of a positive integer \(\boldsymbol{n}\) and will calculate and return the product of the odd integers from \(\mathbf{1}\) to \(\boldsymbol{n}\) (or from \(\mathbf{1}\) to \(\boldsymbol{n} \mathbf{- 1}\) if \(\boldsymbol{n}\) is even).

Q20) Write a function called geomser that will receive values of \(\boldsymbol{r}\) and \(\boldsymbol{n}\), and will calculate and return the sum of the geometric series:
\[
1+r+r^{2}+r^{3}+r^{4}+\ldots+r^{n}
\]

Q21) Create a \(\mathbf{1} \times \mathbf{6}\) vector of random integers, each in the range from \(\mathbf{1}\) to \(\mathbf{2 0}\). Find the minimum and maximum values in the vector, also find the sum of vector.

Q22) Write a function that will receive a matrix as an input argument, and will calculate and return the overall average of all numbers in the matrix.

Q23) Create a vector of five random integers, each in the range from \(\mathbf{- 1 0}\) to
10. Perform each of the following:
- Subtract \(\mathbf{3}\) from each element.
- Count how many are positive.
- Get the absolute value of each element.
- Find the maximum.

Q24) Write a script that will print the following multiplication table:
1
24
369
\(\begin{array}{llll}4 & 8 & 12 & 16\end{array}\)
\(\begin{array}{llll}5 & 10 & 15 & 20 \\ 25\end{array}\)
Q25) The mathematician Euler proved the following:
\[
\frac{\pi^{2}}{6}=1+\frac{1}{4}+\frac{1}{9}+\frac{1}{16}+\cdots
\]

Loop until the sum is close to \(\boldsymbol{\pi}^{2} / 6\)

Q26) Write a script that will continue prompting the user for positive numbers, and storing them in a vector variable, until the user types a negative number.

Q27) An approximation for the exponential function can be found using what is called a Maclaurin series:
\[
e^{x} \approx 1+\frac{x^{1}}{1!}+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\cdots
\]

Write a program to investigate the value of \(\boldsymbol{e}^{\boldsymbol{x}}\) and the \(\boldsymbol{\operatorname { e x p }}\) function.
Q28) The area of a triangle is:
\[
\operatorname{area}=\sqrt{s(s-a)(s-b)(s-c)}
\]

Where \(\boldsymbol{a}, \boldsymbol{b}\), and \(\boldsymbol{c}\) are the lengths of the sides of the triangle, and \(\boldsymbol{s}\) is equal to half the sum of the lengths of the three sides of the triangle. Write a script to calculate and print the area of the triangle.

Q29) Write a function convert_sec to convert seconds in term of (hours : minutes : seconds)

Q30) Determine the sum of the first 50 squared numbers with a control loop.

Q31) Given \(x=\left[\begin{array}{llll}4 & 1 & 6-1 & -2\end{array}\right]\) and \(y=\left[\begin{array}{llll}6 & 2-7 & 1 & \text {-1 }\end{array}\right]\), compute matrices whose elements are created according to the following formulas:
\(\square \boldsymbol{a}_{i j}=\boldsymbol{y}_{i} / \mathbf{x}_{j}\)
- \(b_{i}=\boldsymbol{x}_{i} \boldsymbol{y}_{i}\)
- \(c_{i j}=x_{i} /\left(2+x_{i}+y_{j}\right)\)
- \(d_{i j}=1 / \max \left(x_{i} ; Y_{j}\right)\)

Q32) Write a script that transposes a matrix \(\mathbf{A}\). Check its correctness with the Matlab operation: \(\mathbf{A}^{\prime}\).

Q33) Create an m-by-n array of random numbers (use rand function). Move through the array, element by element, and set any value that is less than \(\mathbf{0 . 5}\) to \(\mathbf{0}\) and any value that is greater than or equal to \(\mathbf{0 . 5}\) to \(\mathbf{1}\).

\subsection*{4.1 Symbolic Algebra}

Symbolic mathematics is used regularly in math, engineering, and science classes. It is often preferable to manipulate equations symbolically before you substitute values for variables. Its means doing mathematics on symbols (not numbers!). For example, \(\boldsymbol{a}+\boldsymbol{a}\) is \(2 \boldsymbol{a}\). The symbolic math functions are in the Symbolic Math Toolbox in MATLAB. Toolboxes contain related functions and are add-ons to MATLAB. The Symbolic Math Toolbox includes an alternative method for solving equations.

\subsection*{4.2 Creating Symbolic Variables and Expressions}

Before we can solve any equations, we need to create some symbolic variables. Simple symbolic variables can be created in two ways. For example, to create the symbolic variable \(\boldsymbol{x}\), type either
```

>> syms x
OR
>> x = sym ('x');

```

Both techniques set the character ' \(\mathbf{x}\) ' equal to the symbolic variable \(\mathbf{x}\). More complicated variables can be created by using existing symbolic variables, as in the expression:
\[
\gg y=2^{*}(x-3)^{\wedge} 2 /\left(x^{\wedge} 2+6^{*} x-9\right)
\]

Notice that both \(\mathbf{x}\) and \(\mathbf{y}\) are symbolic variables, whos command showing that:
>> whos
\begin{tabular}{llrl} 
Name & Size & Bytes & Class
\end{tabular} Attributes

The syms command is particularly convenient, because it can be used to create multiple symbolic variables at the same time, as with the command

\section*{>>syms pir h}

These variables could be combined mathematically to create another symbolic variable, Vcylinder:

\section*{>> Vcylinder=pi*r^2*h}

The sym function can be used to create either an entire expression or an entire equation. For example
\(\gg \mathbf{E}=\operatorname{sym}\left({ }^{\prime} m^{*} c^{\wedge}{ }^{\wedge} 2^{\prime}\right)\)
Creates a symbolic variable named \(\mathbf{E}\). Notice that \(\mathbf{m}\) and \(\mathbf{c}\) are not listed in the workspace window, they have not been specifically defined as symbolic variables. Instead, the input to sym was a character string, identified by the single quotes inside the function.
\begin{tabular}{llll}
\(\mathbf{\gg}\) whos \\
Name & Size & Bytes Class Attributes \\
& & & \\
Vcylinder & \(1 \times 1\) & 60 & sym \\
h & \(1 \times 1\) & 60 & sym \\
\(r\) & \(1 \times 1\) & 60 & sym
\end{tabular}

All basic mathematical operations can be performed on symbolic variables and expressions (e.g., add, subtract, multiply, divide, raise to a power, etc.). For examples:
```

$\gg \mathrm{A}=\operatorname{sym}\left(\right.$ ' $^{\wedge} \mathrm{N}^{\prime}$ ');
$\gg B=\operatorname{sym}\left(' x^{\wedge} 4\right.$ ');
>> A/B

```
ans =
\(1 / x^{\wedge} 2\)
\(\gg \operatorname{sqrt}(\mathrm{B})\)
ans \(=\)
\(\left(x^{\wedge} 4\right)^{\wedge}(1 / 2)\)
>> A^3
ans =
\(x^{\wedge} 6\)
\(\gg B * A\)
ans \(=\)
\(\mathrm{x}^{\wedge} 6\)
>> A + \(\operatorname{sym}\left({ }^{(5 *} \mathbf{x}^{\wedge} 2^{\prime}\right)\)
ans =
\(6 *{ }^{\wedge}{ }^{\wedge} 2\)
>> sym ( \(\left.{ }^{\prime} \mathrm{z}^{\wedge} 3+2^{*} \mathrm{z}^{\wedge} 3^{\prime}\right)\)
ans =
\(3 * z^{\wedge} 3\)

\section*{Example 4.1: Generate symbolic series:}
\[
\begin{array}{llll}
y=x & x^{2} & x^{3} & x^{4} \ldots \\
z=\frac{1}{2 x} & \frac{1}{4 x} & \frac{1}{6 x} \ldots & \frac{1}{2 n x}
\end{array}
\]

\section*{Sol:}
```

>> syms x
>> n=7;
>> y=x.^(1:n)
y =
[x, x^2, x^3, x^4, x^5, x^6, x^7]
>> n=16;
>> z=1./(x*(2:2:n))
Z =
[1/(2*x), 1/(4*x),1/(6*x),1/(8*x),1/(10*x),1/(12*x),1/(14*x),1/(16*x)]

```

Notice that the series results appeared as vectors. Also the sym function uses to create the symbolic matrix. For examples:
```

>> A= sym('a', 3)
A =
[a1_1, a1_2, a1_3]
[a2_1, a2_2, a2_3]
[a3_1, a3_2, a3_3]
>> A= sym('a', [3 5])
A =
[a1_1, a1_2, a1_3, a1_4, a1_5]
[a2_1, a2_2, a2_3, a2_4, a2_5]
[a3_1, a3_2, a3_3, a3_4, a3_5]
>> A= sym('a%d%d', [3 5])
A =
[a11, a12, a13, a14, a15]
[a21, a22, a23, a24, a25]
[a31, a32, a33, a34, a35]

```

Example 4.2: Use an anonymous function to create a symbolic matrix as shown:
\[
\left[\begin{array}{ccc}
\frac{1}{1 * 1} & \cdots & \frac{1}{1 * n} \\
\vdots & \ddots & \vdots \\
\frac{1}{m * 1} & \cdots & \frac{1}{n * m}
\end{array}\right]
\]

\section*{Sol:}
```

>> SymbolicMatrix=@(m,n) sym(1./((1:m)'*(1:n)));

```
>> SymbolicMatrix( \(\mathbf{3 , 5 )}\)
```

ans =
[1, 1/2, 1/3, 1/4, 1/5]
[1/2, 1/4, 1/6, 1/8, 1/10]
[1/3, 1/6, 1/9, 1/12, 1/15]

```

Note: In symbolic expressions the real numbers are converted to rational values, for examples:
>> sym (2.5 + 3.75)
ans =
25/4
>> sym(sqrt(5.5))
ans =
\(\left(2^{\wedge}(1 / 2) * 11^{\wedge}(1 / 2)\right) / 2\)
>> \(\operatorname{sym}\left(9.7^{\wedge} 2 / 2\right)\)
ans =
9409/200

\subsection*{4.3 Simplification Functions}

There are several functions that work with expressions, and simplify the terms such as:

\subsection*{4.3.1 simplify Function}

The simplify function does whatever it can to simplify expressions, including gathering like terms. For example:
```

>> y=sym ('x^2+3*x-5=1');
>> simplify (y)
ans =
x* (x + 3) = 6
>> z = sym ('3*x-(x+3)*(x-3)^2');
>> simplify (z)
ans =
3*x - (x - 3)^2*(x + 3)
>> w = sym (' 'x^3-1 = (x-3)*(x+3)');
>> simplify (w)
ans =

```
```

x^3 + 8 = x^2
>> syms x
>> simplify (cos(x)^2 + \operatorname{sin}(x\mp@subsup{)}{}{\wedge}2)
ans =
1
>> simplify (tan(x)^2-\operatorname{sec}(x\mp@subsup{)}{}{\wedge}2)
ans =
-1

```

\subsection*{4.3.2 expand Function}

The expand function multiplies out all the portions of the expression or equation. For examples:
```

>> syms x
>> expand ((x-2)*(x-4))
ans =
x^2 - 6*x + 8

```
>> syms y
>> expand \((\sin (x+y))\)
ans \(=\)
\(\cos (x) * \sin (y)+\cos (y) * \sin (x)\)
>> expand ((x+8)^3)
ans =
\(x^{\wedge} 3+24 \boldsymbol{*}^{\wedge}{ }^{\wedge} \mathbf{2}+192 * x+512\)
\(\gg y=(1-x)^{\wedge} 3\)
\(\mathrm{y}=\)
\(-(x-1)^{\wedge} 3\)
>> expand (y)
ans =
\(-x^{\wedge} 3+3 * x^{\wedge} 2-3 * x+1\)

\subsection*{4.3.3 factor Function}

The factor function uses to analysis the equations to their factors. For examples:
>> syms \(x\)
\(\gg\) factor ( \(\mathrm{x}^{\wedge}\) 3-1)
```

ans =
(x - 1)*(x^2 + x + 1)

```
>> syms y
```

>> factor (}\mp@subsup{x}{}{\wedge}4-\mp@subsup{y}{}{\wedge}2
ans =
(x^2 - y)*(x^2 + y)

```
>> factor (sym('15236987456'))
ans =
    2^6*173*1376173

\subsection*{4.3.4 collect Function}

The collect function uses to collect coefficients. For examples:
```

>> syms x,y
>> collect ((x-1)^2*(x+1))
ans=
x^3 - x^2 - x + 1
>> collect ((x^2-x^3)^2-4)
ans=
x^6 - 2* x^5 + x^4 - 4

```
>> collect (( \(\left.\left.\mathrm{x}^{\wedge} \mathbf{2 - x ^ { \wedge }} \mathbf{3}\right)^{\wedge} \mathbf{2}^{*}(\mathrm{y}-1)\right)\)
ans =
\((y-1) * x^{\wedge} 6+(2-2 * y) * x^{\wedge} 5+(y-1) * x^{\wedge} 4\)
\(\gg \operatorname{collect}\left(\left(\mathrm{x}^{\wedge} 3-\mathrm{x}^{\wedge} 2\right)^{\wedge} 2-(\mathrm{y}-1)^{\wedge} 3, \mathrm{y}\right)\)
ans =
\(-y^{\wedge} 3+3{ }^{\star} y^{\wedge} 2-3^{*} y+\left(x^{\wedge} 2-x^{\wedge} 3\right)^{\wedge} 2+1\)

\subsection*{4.3.5 subs Function}

The subs function will substitute a value for a symbolic variable in an expression or in an equation. For examples:
```

\gg myexp $=x^{\wedge} 3+3 * x^{\wedge} 2-2$
myexp =
$\mathbf{x}^{\wedge} 3+3 * x^{\wedge} 2-2$
$\gg x=3$;
>> subs (myexp,x)
ans $=$
52

```
\(\gg \operatorname{syms} \times \mathrm{y}\)
\(\gg \operatorname{subs}\left(x^{\wedge} 2-y^{\wedge} 2+x^{*} y-3, x, 2\right)\)
ans =
```

- y^2 + 2*y + 1

```
>> subs ( \(\left.\mathrm{x}^{\wedge} 2-\mathrm{y}^{\wedge} 2+\mathrm{x}^{*} \mathrm{y}-3,\{\mathrm{x}, \mathrm{y}\},\{3,-2\}\right)\)
\% substitutes variables \(x\) and \(y\) with (3,-2)
ans =
    \(-4\)

\subsection*{4.4 Solving Expressions and Equations}

A highly useful function in the symbolic toolbox is solve. It can be used to determine the roots of expressions, to find numerical answers when there is a single variable, and to solve for an unknown symbolically. The solve function can also solve systems of equations, the solve function allows the user to find analytical solutions to a variety of problems.

\subsection*{4.4.1 solve Function}

The function solve solves an equation and returns the root(s) as symbolic expressions. The solution can be converted to numbers using any numeric function, such as double, for example:
```

>> syms x
>> R = solve ('2**^N 2 + x = 6')
R =
-2
3/2
>> double (R)
ans =
-2.0000
1.5000

```

The solve function sets the expression equal to zero and solves for the roots. For example:
```

>> solve ('3**^^2 + x')
ans=
-1/3
O

```

If there is more than one variable, MATLAB preferentially solves for \(\boldsymbol{x}\). If there is no \(\boldsymbol{x}\) in the expression, MATLAB finds the variable closest to \(\boldsymbol{x}\). For example:
```

>> solve ('a* $\mathbf{x}^{\wedge} 2+{ }^{2}{ }^{*} \mathrm{x}+\mathrm{c}^{\prime}$)
ans =
$-\left(b+\left(b^{\wedge} 2-4 * a * c\right) \wedge(1 / 2)\right) /(2 * a)$
-(b - (b^2 - 4*a*c)^(1/2))/(2*a)

```

However, it is possible to specify which variable to solve for:
```

>> solve ('a* \mathbf{x}^{\wedge} 2+b*'x +c', 'a') \% sulves far variable a
ans =
$-(c+b * x) / x^{\wedge} 2$

```

MATLAB can also solve sets of equations. In this example, the solutions for \(\boldsymbol{x}\), \(\boldsymbol{y}\), and \(z\) are returned as a structure consisting of fields for \(\boldsymbol{x}, \boldsymbol{y}\), and \(\boldsymbol{z}\). The individual solutions are symbolic expressions stored in fields of the structure.

```

R =
x: [1x1 sym]
y: [1x1 sym]
z: [1x1 sym]

```

To refer to the individual solutions, which are in the structure fields, the dot operator (.) is used.
```

>> X = R.x
X =
124/41
>> y = R.y
y =
121/41

```
>> \(\mathrm{z}=\) R. z
Z =
    33/41

The double function can then be used to covert the symbolic expressions to numbers, and store the results from the three unknowns in a vector.
```

>> double ([xy y $]$)
ans $=$
$3.0244 \quad 2.9512 \quad 0.8049$

```

\subsection*{4.5 Calculus}

MATLAB provides various ways for solving problems of differential and integral calculus, solving differential equations of any degree and calculation of limits. Best of all, you can easily plot the graphs of complex functions and check maxima, minima and other stationery points on a graph by solving the original function, as well as its derivative. We will deal with the problems of calculus, and discuss pre-calculus concepts i.e., calculating limits of functions and verifying the
properties of limits. We will also discuss solving differential equations. Finally, we will discuss integral calculus.

\subsection*{4.5.1 Limit Calculation}

The limit function takes expression as an argument and finds the limit of the expression as the independent variable goes to zero. For examples:
```

>> syms x
>> limit ((x^3+5)/(x^4+7))
ans =
5/7
>> limit ((x-3)/(x-1), -1)
ans =
2

```

Algebraic Limit Theorem provides some basic properties of limits. These are as follows:
\[
\begin{aligned}
& \lim _{x \rightarrow p}(f(x)+g(x))=\lim _{x \rightarrow p} f(x)+\lim _{x \rightarrow p} g(x) \\
& \lim _{x \rightarrow p}(f(x)-g(x))=\lim _{x \rightarrow p} f(x)-\lim _{x \rightarrow p} g(x) \\
& \lim _{x \rightarrow p}(f(x) \cdot g(x))=\lim _{x \rightarrow p} f(x) \cdot \lim _{x \rightarrow p} g(x) \\
& \lim _{x \rightarrow p}(f(x) / g(x))=\lim _{x \rightarrow p} f(x) / \lim _{x \rightarrow p} g(x)
\end{aligned}
\]

Example 4.3: Two functions: \(f(x)=(3 x+5) /(x-3)\) and \(g(x)=x^{2}+1\). Calculate the limits of the functions as \(\boldsymbol{x}\) tends to 4 , of both functions and verify the basic properties of limits using these two functions and MATLAB.
```

>> syms x
$\gg \mathrm{f}=(3 * \mathrm{x}+5) /(\mathrm{x}-3)$;
$\gg g=x^{\wedge} 2+1 ;$
>> $\lim _{-}=\operatorname{limit}(\mathbf{f}, 4)$
lim_f =

```
    17
>> lim_g \(=\) limit \((\mathbf{g}, 4)\)
lim_g =
    17
>> \(\operatorname{limAdd}=\operatorname{limit}(\mathbf{f}+\mathbf{g}, 4)\)
limAdd =
```

>> limSub $=\operatorname{limit}(\mathbf{f}-\mathrm{g}, \mathbf{4})$
limSub =
0

```
```

>> $\operatorname{limMulti}=\operatorname{limit}(\mathbf{f} * \mathbf{g}, 4)$

```
>> \(\operatorname{limMulti}=\operatorname{limit}(\mathbf{f} * \mathbf{g}, 4)\)
limMulti =
```

 289
 >> limDiv $=\operatorname{limit}(\mathbf{f} / \mathrm{g}, \mathbf{4})$
limDiv =
1

When limits of a function $\boldsymbol{f}(\boldsymbol{x})$ has discontinuity at $\boldsymbol{x}=\boldsymbol{a}$. This leads to the concept of left-handed and right-handed limits. A left-handed limit is defined as the limit as $\boldsymbol{x} \rightarrow \boldsymbol{a}$, from the left, i.e., \boldsymbol{x} approaches \mathbf{a}, for values of $\boldsymbol{x}<\boldsymbol{a}$. A righthanded limit is defined as the limit as $\boldsymbol{x} \rightarrow \boldsymbol{a}$, from the right, i.e., \boldsymbol{x} approaches \boldsymbol{a}, for values of $\boldsymbol{x}>\boldsymbol{a}$. When the left-handed limit and right-handed limits are not equal, the limit does not exist. For example:

```
>> f =(x -3)/abs(x-3);
>> left_lim = limit (f, x, 3, 'left')
left_lim =
    -1
```

>> right_lim $=\operatorname{limit}(\mathbf{f}, \mathbf{x}, \mathbf{3}$, 'right')
right_lim =
1

4.5.2 Differential

MATLAB provides the diff function for computing symbolic derivatives. In its simplest form, for examples:

```
>> syms t
>> f=3*t^2+2* t^(-2);
>> diff (f)
ans =
    6*t - 4/t^3
>> syms x
>> diff (( }\mp@subsup{\textrm{x}}{}{\wedge}2+3)*(x+2)
ans =
    2*x* (x + 2) + x^2 + 3
>> der = diff ((2*t^2 + 3*t)/(t^3 + 1))
der =
```

```
(4*t + 3)/(t^3 + 1) - (3*t^2* (2*t^2 + 3*t))/(t^3 + 1)^2
>> diff (cos(x)^2)
ans =
    -2*}\operatorname{cos}(x)*\operatorname{sin}(x
```

$\gg \operatorname{diff}\left(\exp \left(3^{*} x^{\wedge} 3\right)\right)$
ans =
9*x^2*exp (3*x^3)
>> diff $(\log (t))$
ans $=$
$1 / t$
$\gg \operatorname{diff}(\log 10(t))$
ans =
1/(t*log(10))

To compute higher derivatives of a function f, we use the syntax: $\operatorname{diff}(f, n)$. For examples:

```
>> f=2* \(x^{\wedge} 3-3 * x^{\wedge} 2+4 * x-1\);
\(\gg \operatorname{der} 1=\operatorname{diff}(f)\)
der1 =
    6*x^2 - 6*x + 4
```

>> der2= $\operatorname{diff}(f, 2)$
$\operatorname{der} 2=$
12*x - 6
>> der3= $\operatorname{diff}(f, 3)$
der3 =
12

The basic rules of derivatives for function \boldsymbol{f} and \boldsymbol{g} are:

$$
\begin{array}{ll}
{[f+g]^{\prime}=f^{\prime}+g^{\prime}} & \\
{[f-g]^{\prime}=f^{\prime}-g^{\prime}} & \\
{[f g]^{\prime}=f^{\prime} g+f g^{\prime}} & \text { product rule } \\
{\left[\frac{f}{g}\right]^{\prime}=\frac{f^{\prime} g-f g^{\prime}}{g^{2}}} & \text { quotient rule } \\
{[g(f)]^{\prime}=g^{\prime}(f) \cdot f^{\prime}} & \text { chain rule }
\end{array}
$$

Example 4.4: Two functions $f(x)=2 x^{2}-x+2$ and $g(x)=3 x^{3}-8$, prove the product rule $(f . g)^{\prime}=f^{\prime} . g+f . g^{\prime}$. Write a program to verify the result.

Sol:

```
syms x
f=2* *^ 2-x+2;
g=3*x^3-3*x;
lhs=diff(f*g);
rhs= diff(f)*g+diff(g)*f;
if lhs==rhs
    disp('the LHS is equal RHS and the result is :')
    disp(lhs)
else
    disp('there is an Error')
end
```

the LHS is equal RHS and the result is :
$\left(9 * x^{\wedge} 2-3\right) *\left(2 * x^{\wedge} 2-x+2\right)-(4 * x-1) *\left(3 * x-3 * x^{\wedge} 3\right)$

Example 4.5: Write a script to solve a problem. Given that a function $y=f(x)=3$ $\boldsymbol{\operatorname { s i n }}(\boldsymbol{x})+7 \boldsymbol{\operatorname { c o s }}(5 x)$. We will have to find out whether the equation $f^{\prime \prime}+f=-5 \boldsymbol{\operatorname { c o s }}$ $(2 x)$ holds true.

```
Sol:
syms x
y = 3* sin(x) +7* cos(5*x);
lhs = diff(y,2)+y;
rhs =-5* cos (2*x);
if lhs==rhs
    disp('Yes, the equation holds true');
else
        disp('No, the equation does not hold true');
end
disp('Value of LHS is: ')
disp(lhs);
No, the equation does not hold true
Value of LHS is:
-168*cos (5*x)
```

Note: MATLAB provides the dsolve function for solving differential equations symbolically. The most basic form of the dsolve function for finding the solution to a single equation is: dsolve ('eqn') where eqn is a text string used to enter the equation. It returns a symbolic solution with default independent variable is \boldsymbol{t} and a
set of arbitrary constants that MATLAB labels $\mathbf{C 1}, \mathbf{C} 2$, and so on. The equation: $f^{\prime \prime}(x)+2 f^{\prime}(x)=5 \sin 3 x$ should be entered as: 'D2y $+2 \mathrm{Dy}=5 * \sin (3 * x)$ ' where derivatives are indicated with a "D". For example, the $1^{\text {st }}$ differential equation: $\mathbf{y}^{\prime}=5 \mathbf{y}$

```
>> s = dsolve ('Dy = 5*''')
s =
    C2*exp (5*t)
```

For $2^{\text {nd }}$ differential equation: $\mathbf{y}^{\prime \prime}-\mathbf{y}=\mathbf{0}, \mathbf{y}(\mathbf{0})=\mathbf{- 1}, \mathbf{y}^{\prime}(\mathbf{0})=\mathbf{2}$.

```
>> dsolve ('D2y - y = 0',}'\textrm{y}(0)=-1','Dy(0)=2'
ans =
    exp(t)/2 - 3/(2*exp (t))
```

To substitute the variable \boldsymbol{t} with any other variables, the expression should be:

```
\(\gg\) dsolve ('D2y \(\left.-\mathrm{y}=\mathrm{O}^{\prime},{ }^{\prime} \mathrm{y}(0)=-1^{\prime},{ }^{\prime} \mathrm{Dy}(0)=2^{\prime},{ }^{\prime} \mathrm{x}^{\prime}\right)\)
ans =
    \(\exp (x) / 2-3 /(2 * \exp (x))\)
```


4.5.3 Integration

MATLAB provides an int function for calculating integral of an expression. For examples:

```
>> syms x
>> f=2*x;
>> int (f)
ans =
    x^2
>> syms x n
>> int(n^x)
ans=
    n^x/log(n)
>> int (x^n)
ans =
    piecewise([n = -1, log(x)], [n <> -1, x^(n + 1)/(n + 1)])
>> f= 㕸(n*x);
>> int(f)
ans =
    -cos(n*x)/n
```

```
>> syms a t
>> int (a*cos(pi*t))
ans =
    (a*sin(pi*t))/pi
>> SymS x
>>f= int (x}\mp@subsup{x}{}{\wedge}5*\operatorname{cos}(5*x)
f=
```



```
+ (x^4*}\operatorname{cos}(5*x))/5 - (4*x^3*\operatorname{sin}(5*x))/25 + (x^5*sin(5*x))/5
```

As shown before, the result of integration function seems difficult to understand, so MATLAB provides the pretty function which returns an expression in a more readable format, for example:

```
>> pretty(f)
```


The int function can be used for definite integration by passing the limits over which you want to calculate the integral. To calculate:

$$
\int_{a}^{b} f(x) d x=f(b)-f(a)
$$

The syntax of int function is: int ($\mathbf{x}, \mathbf{a}, \mathbf{b}$). For example, to calculate the value of $\int_{2}^{9} x d x$

```
>> syms x
>> int (x,2,9)
ans =
    77/2
```

Example 4.6: Calculate the area enclosed between the x-axis, and the curve $y=$ $x^{3}-2 x+5$ and the ordinates $x=1$ and $x=2$.

Sol:

The required area is given by : $\mathrm{A}=\int_{1}^{2}\left(x^{3}-2 x+5\right) d x$ and the commands are:
>> syms x

```
>> f=x^3-2*x+5;
```

>> area=int(f,1,2)
area $=$
23/4
>> disp('Area = '), disp (double(area))
Area $=$

5.7500

Example 4.7: Find the area under the curve: $f(x)=x^{2} \boldsymbol{\operatorname { c o s }}(x)$ for $-4 \leq x \leq 9$.

Sol:

```
>> f=x^2* cos(x);
>> area=int (f,-4,9)
area =
    8*\operatorname{cos (4) + 18*cos(9) + 14*sin(4) + 79*sin(9)}
```

>> fprintf ('the area $=\% 0.3 \mathrm{f} \backslash \mathrm{n}^{\prime}$, double(area))
the area $=0.333$

Exercises

Q1) Create the following symbolic expressions using either the sym or syms functions:
I. $x^{2}-1$
II. $(x+1)^{2}$
III. $a x^{2}-2$
IV. $a x^{2}+b x+c$
V. $a x^{3}+b x^{2}+c x+d$
VI. $\frac{y^{2}-x^{2}}{a x y^{(2 b-c)}}$
VII. $\sin ^{2} x+\cos y$
VIII. $\tan ^{2} y+\frac{\sin x}{\operatorname{secy}}$

Q2) Use the symbolic expressions from Q1 to find:

1) Multiply I and II and named result $\boldsymbol{y} \mathbf{I}$
2) Divide \mathbf{I} by II and named result $\boldsymbol{y} \mathbf{2}$
3) Add III and IV and named result $\boldsymbol{y} 3$
4) Multiply VII and VIII, named result $\boldsymbol{y} 4$
5) Divide VII by VIII, named result $\mathbf{y} 5$
6) Use the factor, expand, collect and simplify functions on $y 1, y 2, y 3, y 4$ and $y 5$.
7) Find the final result of VII,VIII and $\boldsymbol{y} 5$ when $\boldsymbol{x}=30^{\circ}$ and $\boldsymbol{y}=70^{\circ}$

Q3) Define series symbolically:

- $1 \frac{1}{2} \frac{1}{3} \frac{1}{4} \ldots \frac{1}{n}$
- $\frac{3}{1 \times 2} \frac{4}{2 \times 3} \frac{5}{3 \times 4} \ldots \frac{(n+2)}{n \times(n+1)}$
- $-1-\frac{1}{3}-\frac{1}{9} \ldots-\frac{1}{3^{n}}$
- $\frac{\pi}{2} \frac{2 \pi}{2} \frac{3 \pi}{2} \ldots \frac{n \pi}{2}$
- $\frac{y}{x} \quad \frac{y^{2}}{x^{3}} \frac{y^{3}}{x^{5}} \ldots \frac{y^{n}}{x^{2 n-1}}$

Q4) Use the variables and expressions in Q1:

- Use the solve function to solve I and II
- Use the solve function to solve III, for both \boldsymbol{x} and \boldsymbol{a},
- Find the value of \boldsymbol{x} and \boldsymbol{a} by solving both II and III. Then find the same values when (exp. II equals 3) and (exp. III equals 5)

Q5) Consider the following system of linear equations:

$$
\begin{aligned}
5 x+6 y-3 z & =10 \\
3 x-3 y+2 z & =14 \\
2 x-4 y-12 z & =24
\end{aligned}
$$

Use the solve function to solve for $\boldsymbol{x}, \boldsymbol{y}$, and \boldsymbol{z}, resolve equations using linear algebra techniques.

Q6) Consider the following nonlinear system of equations:

$$
\begin{gathered}
x^{2}+5 y-3 z^{3}=15 \\
4 x+y^{2}-z=10 \\
x+y+z=15
\end{gathered}
$$

Solve the nonlinear system with the solve function. Make your results more readable.

- Define a vector \boldsymbol{v} of the even numbers from $\mathbf{0}$ to $\mathbf{1 0}$. Substitute this vector into I and II

Q7) Find the $\boldsymbol{1}^{s t}$ derivative of the following expressions:

$$
\begin{gathered}
x^{2}+x-1 \\
\sin (x) \\
\tan (x) \\
\ln (x)
\end{gathered}
$$

Q8) Find the $\boldsymbol{1}^{s t}$ and $2^{n d}$ partial derivatives with respect to \boldsymbol{x} of the following expressions:

$$
\begin{gathered}
a x^{2}+b x+c \\
x^{0.5}-3 y \\
\tan (x+y) \\
3 x+4 y-3 x y \\
2 y-3 x^{2}
\end{gathered}
$$

Refined $2^{\text {nd }}$ partial derivative with respect to \boldsymbol{y}
Q9) Integrate the expressions in Q8 and Q9 with respect to \boldsymbol{x}, then integrate the expressions in Q9 with respect to \boldsymbol{y}

Q10) Perform a double integration with respect to y for each of the expressions in Q9

Q11) A college student goes to the cafeteria and buys lunch. The next day he spends twice as much. The third day he spends $\mathbf{\$ 1}$ less than he did the second day. At the end of $\mathbf{3}$ days he has spent $\$ \mathbf{3 5}$. How much did he spend each day? Solve this problem.

Q12) Consider the following set of seven equations:

$$
\begin{aligned}
3 x_{1}+4 x_{2}+2 x_{3}-x_{4}+x_{5}+7 x_{6}+x_{7} & =42 \\
2 x_{1}-2 x_{2}+3 x_{3}-4 x_{4}+5 x_{5}+2 x_{6}+8 x_{7} & =32 \\
x_{1}+2 x_{2}+3 x_{3}+x_{4}+2 x_{5}+4 x_{6}+6 x_{7} & =12 \\
5 x_{1}+10 x_{2}+4 x_{3}+3 x_{4}+9 x_{5}-2 x_{6}+x_{7} & =-5 \\
3 x_{1}+2 x_{2}-2 x_{3}-4 x_{4}-5 x_{5}-6 x_{6}+7 x_{7} & =10 \\
-2 x_{1}+9 x_{2}+x_{3}+3 x_{4}-3 x_{5}+5 x_{6}+x_{7} & =18 \\
x_{1}-2 x_{2}-8 x_{3}+4 x_{4}+2 x_{5}+4 x_{6}+5 x_{7} & =17
\end{aligned}
$$

Define a symbolic variable for each of the equations, and use MATLAB to solve for each unknown. Compare the amount of time it takes to solve the preceding problem by using symbolic math with the tic and toc functions, whose syntax is:
tic
:
code to be timed
:
toc
Q13) Determine the $1^{\text {st }}$ and $2^{\text {nd }}$ derivatives of the following functions:

$$
\begin{aligned}
f_{1}(x)=y & =x^{3}-4 x^{2}+3 x+8 \\
f_{2}(x)=y & =\left(x^{2}-2 x+1\right)(x-1) \\
f_{3}(x)=y & =\cos (2 x) \sin (x) \\
f_{4}(x)=y & =3 x e^{4 x^{2}}
\end{aligned}
$$

Q14) Use MATLAB symbolic functions to perform the following integrations:
$\int\left(x^{2}+1\right) d x$
$\int_{0.2}^{1.3}\left(x^{2}+x\right) d x$
$\int\left(x^{2}+y^{2}\right) d x$
$\int_{3.5}^{21}\left(a x^{2}+b x+c\right) d x$
Q15) The following polynomial represent the altitude in meters during the first 48 hours following the launch of a weather balloon:

$$
h(t)=-0.12 t^{4}+12 t^{3}-380 t^{2}+4100 t+220
$$

Assume that the unit of t is hours.

1) Find the velocity which it's the $\boldsymbol{I}^{\text {st }}$ derivative of the altitude to determine the equation for the velocity of the balloon.
2) Find the acceleration is the derivative of velocity, or the $2^{\text {nd }}$ derivative of the altitude, to determine the equation for the acceleration of the balloon.
3) Determine when the balloon hits the ground. Because $\boldsymbol{h}(\boldsymbol{t})$ is a fourth-order polynomial, there will be four answers. However, only one answer will be physically meaningful.
4) Determine the maximum height reached by the balloon. Use the fact that the velocity of the balloon is zero at the maximum height.
